Question

Suppose {xn} is a sequence of real numbers that converges to +infinity, and suppose that {bn}...

Suppose {xn} is a sequence of real numbers that converges to +infinity, and suppose that {bn} is a sequence of real numbers that converges. Prove that {xn+bn} converges to +infinity.

Homework Answers

Answer #1

.

.

If you have doubt at any step please comment.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that if (xn) is a sequence of real numbers, then lim sup|xn| = 0 as...
Prove that if (xn) is a sequence of real numbers, then lim sup|xn| = 0 as n approaches infinity. if and only if the limit of (xN) exists and xn approaches 0.
Given that xn is a sequence of real numbers. If (xn) is a convergent sequence prove...
Given that xn is a sequence of real numbers. If (xn) is a convergent sequence prove that (xn) is bounded. That is, show that there exists C > 0 such that |xn| less than or equal to C for all n in N.
Let <Xn> be a cauchy sequence of real numbers. Prove that <Xn> has a limit.
Let <Xn> be a cauchy sequence of real numbers. Prove that <Xn> has a limit.
Prove: If x is a sequence of real numbers that converges to L, then any subsequence...
Prove: If x is a sequence of real numbers that converges to L, then any subsequence of x converges to L.
If (xn) is a sequence of nonzero real numbers and if limn→∞ xn = x where...
If (xn) is a sequence of nonzero real numbers and if limn→∞ xn = x where x does not equal zero; prove that lim n→∞ 1/ xn = 1/x
Suppose (an) is an increasing sequence of real numbers. Show, if (an) has a bounded subsequence,...
Suppose (an) is an increasing sequence of real numbers. Show, if (an) has a bounded subsequence, then (an) converges; and (an) diverges to infinity if and only if (an) has an unbounded subsequence.
Real Analysis: Suppose f: [0,1] --> R is continuous, and {xn} is a Cauchy sequence in...
Real Analysis: Suppose f: [0,1] --> R is continuous, and {xn} is a Cauchy sequence in [0,1]. Prove or disprove that {f(xn)} is a Cauchy Sequence.
Telescoping Series. Let {an} ∞ n=0 be a sequence of real numbers converging to zero, limn→∞...
Telescoping Series. Let {an} ∞ n=0 be a sequence of real numbers converging to zero, limn→∞ an = 0. Let bn = an − an+1. Then the series X∞ n=0 bn converges.
Suppose convergent series Ak has partial sums: an And a series Bk has partial sums: bn...
Suppose convergent series Ak has partial sums: an And a series Bk has partial sums: bn Suppose lim(bn-an) =0, as n to infinity. Whether series Bk is converges or not? Prove. Suppose lim(Bk-Ak) =0, as k to infinity. Whether series Bk is converges or not? Prove.
Prove that when Xn-an converges in probability to 0 and an converges to a, Xn converges...
Prove that when Xn-an converges in probability to 0 and an converges to a, Xn converges in probability to a.