Question

Using the definition of convergence of a sequence, prove that the sequence converges to the proposed...

Using the definition of convergence of a sequence, prove that the sequence converges to the proposed limit.
lim (as n goes to infinity) 1/(n^2) = 0

Homework Answers

Answer #1

Let

We want

So that

Taking we have and for which we have

Meaning by the definition of limit

Hope this was helpful. Please do leave a positive rating if you liked this answer. Thanks and have a good day!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that a sequence (un such that n>=1) absolutely converges if the limit as n approaches...
Prove that a sequence (un such that n>=1) absolutely converges if the limit as n approaches infinity of n2un=L>0
Mathematical Real Analysis Convergence Sequence Conception Question: By the definition: for all epsilon >0 there exists...
Mathematical Real Analysis Convergence Sequence Conception Question: By the definition: for all epsilon >0 there exists a N such that for all n>N absolute an-a < epsilon Question: assume bn ----->b and b is not 0.  prove that lim n to infinity 1/ bn = 1/ b . Please Tell me why here we need to have N1 and N2 and Find the Max(N1,N2) but other example we don't. Solve the question step by step as well
suppose (Sn) converges to s and (tn) converges to t. use the definition of convergence of...
suppose (Sn) converges to s and (tn) converges to t. use the definition of convergence of sequences to prove that (sn+tn) converges to s+t.
2. Sequence Convergence¶ (To be answered in LaTex) Show that the following sequence limits using either...
2. Sequence Convergence¶ (To be answered in LaTex) Show that the following sequence limits using either an ?−?ε−δ argument a) lim (3?+1) / (2?+5) = 3/2 answer in LaTex b) lim (2?) / (n+2) =2   answer in LaTex c) lim [(1/?) − 1/(?+1)] = 0 answer in LaTex
Prove that if (xn) is a sequence of real numbers, then lim sup|xn| = 0 as...
Prove that if (xn) is a sequence of real numbers, then lim sup|xn| = 0 as n approaches infinity. if and only if the limit of (xN) exists and xn approaches 0.
In this task, you will write a proof to analyze the limit of a sequence. ASSUMPTIONS...
In this task, you will write a proof to analyze the limit of a sequence. ASSUMPTIONS Definition: A sequence {an} for n = 1 to ∞ converges to a real number A if and only if for each ε > 0 there is a positive integer N such that for all n ≥ N, |an – A| < ε . Let P be 6. and Let Q be 24. Define your sequence to be an = 4 + 1/(Pn +...
Determine whether the sequence converges or diverges. If it converges, find the limit. (If an answer...
Determine whether the sequence converges or diverges. If it converges, find the limit. (If an answer does not exist, enter DNE.) an = 4 − (0.7)n lim n→∞ an = please box answer
Prove that if a sequence converges to a limit x then very subsequence converges to x.
Prove that if a sequence converges to a limit x then very subsequence converges to x.
suppose that the sequence (sn) converges to s. prove that if s > 0 and sn...
suppose that the sequence (sn) converges to s. prove that if s > 0 and sn >= 0 for all n, then the sequence (sqrt(sn)) converges to sqrt(s)
In this task, you will write a proof to analyze the limit of a sequence. ASSUMPTIONS...
In this task, you will write a proof to analyze the limit of a sequence. ASSUMPTIONS Definition: A sequence {an} for n = 1 to ∞ converges to a real number A if and only if for each ε > 0 there is a positive integer N such that for all n ≥ N, |an – A| < ε . Let P be 6. and Let Q be 24. Define your sequence to be an = 4 + 1/(Pn +...