Question

For any integer n>1, prove that Zn[x]/<x> is isomorphic to Zn. Please explain best way possible...

For any integer n>1, prove that Zn[x]/<x> is isomorphic to Zn. Please explain best way possible and use First Isomorphism Theorem for rings.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let n be an even integer. Prove that Dn/Z(Dn) is isomorphic to D(n/2). Prove this using...
Let n be an even integer. Prove that Dn/Z(Dn) is isomorphic to D(n/2). Prove this using the First Isomorphism Theorem
Prove that the ring Z[x]/(n), where n ∈ Z, is isomorphic to Zn[x].
Prove that the ring Z[x]/(n), where n ∈ Z, is isomorphic to Zn[x].
Prove that if x+ \frac{1}{x} is integer then x^n+ \frac{1}{x^n} is also integer for any positive...
Prove that if x+ \frac{1}{x} is integer then x^n+ \frac{1}{x^n} is also integer for any positive integer n. KEY NOTE: PROVE BY INDUCTION
Prove that if x ∈ Zn − {0} and x has no common divisor with n...
Prove that if x ∈ Zn − {0} and x has no common divisor with n greater than 1, then x has a multiplicative inverse in (Zn − {0}, ·n). State the theorem about Euler’s φ function and show why this fact implies it.
Prove that the rings, Z[x]/<2,x> is isomorphic to Z/2 and explain why this means that <2,x>...
Prove that the rings, Z[x]/<2,x> is isomorphic to Z/2 and explain why this means that <2,x> is a maximal in Z[x]
Let n ≥ 1 be an integer. Use the Pigeonhole Principle to prove that in any...
Let n ≥ 1 be an integer. Use the Pigeonhole Principle to prove that in any set of n + 1 integers from {1, 2, . . . , 2n}, there are two elements that are consecutive (i.e., differ by one).
Show that, for any integer n ≥ 2, (n + 1)n − 1 is divisible by...
Show that, for any integer n ≥ 2, (n + 1)n − 1 is divisible by n2 . (Hint: Use the Binomial Theorem.)
Let n be an integer, with n ≥ 2. Prove by contradiction that if n is...
Let n be an integer, with n ≥ 2. Prove by contradiction that if n is not a prime number, then n is divisible by an integer x with 1 < x ≤√n. [Note: An integer m is divisible by another integer n if there exists a third integer k such that m = nk. This is just a formal way of saying that m is divisible by n if m n is an integer.]
Use Mathematical Induction to prove that for any odd integer n >= 1, 4 divides 3n+1.
Use Mathematical Induction to prove that for any odd integer n >= 1, 4 divides 3n+1.
Prove that a positive integer n, n > 1, is a perfect square if and only...
Prove that a positive integer n, n > 1, is a perfect square if and only if when we write n = P1e1P2e2... Prer with each Pi prime and p1 < ... < pr, every exponent ei is even. (Hint: use the Fundamental Theorem of Arithmetic!)