Question

Prove that if x+ \frac{1}{x} is integer then x^n+ \frac{1}{x^n} is also integer for any positive...

Prove that if x+ \frac{1}{x} is integer then x^n+ \frac{1}{x^n} is also integer for any positive integer n.

KEY NOTE: PROVE BY INDUCTION

Homework Answers

Answer #1

Here is the required proof.I hope the answer will help you.Please give a thumbs up if you get benefited by my effort.Your feedback is very much precious to me.Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
$\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+....+\frac{1}{n!}<3-\frac{2}{(n+1)!}$\ $\forall\in\mathbb{N}$ / {1} proof by induction
$\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+....+\frac{1}{n!}<3-\frac{2}{(n+1)!}$\ $\forall\in\mathbb{N}$ / {1} proof by induction
Discrete math Use mathematical induction to prove that n(n+5) is divisible by 2 for any positive...
Discrete math Use mathematical induction to prove that n(n+5) is divisible by 2 for any positive integer n.
Use Mathematical Induction to prove that for any odd integer n >= 1, 4 divides 3n+1.
Use Mathematical Induction to prove that for any odd integer n >= 1, 4 divides 3n+1.
Prove that if n is a positive integer greater than 1, then n! + 1 is...
Prove that if n is a positive integer greater than 1, then n! + 1 is odd Prove that if a, b, c are integers such that a2 + b2 = c2, then at least one of a, b, or c is even.
Prove that for any positive integer n, a field F can have at most a finite...
Prove that for any positive integer n, a field F can have at most a finite number of elements of multiplicative order at most n.
Prove 1/4 is not a limit point of 1/n where n is a positive integer.
Prove 1/4 is not a limit point of 1/n where n is a positive integer.
Suppose for each positive integer n, an is an integer such that a1 = 1 and...
Suppose for each positive integer n, an is an integer such that a1 = 1 and ak = 2ak−1 + 1 for each integer k ≥ 2. Guess a simple expression involving n that evaluates an for each positive integer n. Prove that your guess works for each n ≥ 1. Suppose for each positive integer n, an is an integer such that a1 = 7 and ak = 2ak−1 + 1 for each integer k ≥ 2. Guess a...
Suppose x is a positive real number such that x + (1/x) is an integer. Prove...
Suppose x is a positive real number such that x + (1/x) is an integer. Prove that x^2019 + (1/x^2019) is an integer.
Without using induction, prove that for x is an odd, positive integer, 3x ≡−1 (mod 4)....
Without using induction, prove that for x is an odd, positive integer, 3x ≡−1 (mod 4). I'm not sure how to approach the problem. I thought to assume that x=2a+1 and then show that 3^x +1 is divisible by 4 and thus congruent to 3x=-1(mod4) but I'm stuck.
Prove that for every positive integer n, there exists an irreducible polynomial of degree n in...
Prove that for every positive integer n, there exists an irreducible polynomial of degree n in Q[x].