Question

Prove that the ring Z[x]/(n), where n ∈ Z, is isomorphic to Zn[x].

Prove that the ring Z[x]/(n), where n ∈ Z, is isomorphic to Zn[x].

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For any integer n>1, prove that Zn[x]/<x> is isomorphic to Zn. Please explain best way possible...
For any integer n>1, prove that Zn[x]/<x> is isomorphic to Zn. Please explain best way possible and use First Isomorphism Theorem for rings.
Let n be an even integer. Prove that Dn/Z(Dn) is isomorphic to D(n/2). Prove this using...
Let n be an even integer. Prove that Dn/Z(Dn) is isomorphic to D(n/2). Prove this using the First Isomorphism Theorem
Prove that the rings, Z[x]/<2,x> is isomorphic to Z/2 and explain why this means that <2,x>...
Prove that the rings, Z[x]/<2,x> is isomorphic to Z/2 and explain why this means that <2,x> is a maximal in Z[x]
(2) Letn∈Z+ withn>1. Provethatif[a]n isaunitinZn,thenforeach[b]n ∈Zn,theequation[a]n⊙x=[b]n has a unique solution x ∈ Zn. Note: You must...
(2) Letn∈Z+ withn>1. Provethatif[a]n isaunitinZn,thenforeach[b]n ∈Zn,theequation[a]n⊙x=[b]n has a unique solution x ∈ Zn. Note: You must find a solution to the equation and show that this solution is unique. (3) Let n ∈ Z+ with n > 1, and let [a]n, [b]n ∈ Zn with [a]n ̸= [0]n. Prove that, if the equation [a]n ⊙ x = [b]n has no solution x ∈ Zn, then [a]n must be a zero divisor.
Prove that if x ∈ Zn − {0} and x has no common divisor with n...
Prove that if x ∈ Zn − {0} and x has no common divisor with n greater than 1, then x has a multiplicative inverse in (Zn − {0}, ·n). State the theorem about Euler’s φ function and show why this fact implies it.
Is the ring Z Noetherian? Prove your answer. Is the ring Z Artinian? Prove your answer.
Is the ring Z Noetherian? Prove your answer. Is the ring Z Artinian? Prove your answer.
problem 2 In the polynomial ring Z[x], let I = {a0 + a1x + ... +...
problem 2 In the polynomial ring Z[x], let I = {a0 + a1x + ... + anx^n: ai in Z[x],a0 = 5n}, that is, the set of all polynomials where the constant coefficient is a multiple of 5. You can assume that I is an ideal of Z[x]. a. What is the simplest form of an element in the quotient ring z[x] / I? b. Explicitly give the elements in Z[x] / I. c. Prove that I is not a...
Prove that, for any group G, G/Z(G) is isomorphic to Inn(G)
Prove that, for any group G, G/Z(G) is isomorphic to Inn(G)
View Z as a module over the ring R=Z[x,y] where x and y act by 0....
View Z as a module over the ring R=Z[x,y] where x and y act by 0. fond a free resolution of Z over R.
In Z, let I=〈3〉and J=〈18〉. Show that the group I/J is isomorphic to the group Z6...
In Z, let I=〈3〉and J=〈18〉. Show that the group I/J is isomorphic to the group Z6 but that the ring I/J is not ring-isomorphic to the ring Z6 .
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT