Question

Suppose that R is a partial order. If Y is a subset of R, would it...

Suppose that R is a partial order. If Y is a subset of R, would it also be a partial order? Prove or disprove this.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the relation R defined on the set R as follows: ∀x, y ∈ R, (x,...
Consider the relation R defined on the set R as follows: ∀x, y ∈ R, (x, y) ∈ R if and only if x + 2 > y. For example, (4, 3) is in R because 4 + 2 = 6, which is greater than 3. (a) Is the relation reflexive? Prove or disprove. (b) Is the relation symmetric? Prove or disprove. (c) Is the relation transitive? Prove or disprove. (d) Is it an equivalence relation? Explain.
a) Let R be an equivalence relation defined on some set A. Prove using induction that...
a) Let R be an equivalence relation defined on some set A. Prove using induction that R^n is also an equivalence relation. Note: In order to prove transitivity, you may use the fact that R is transitive if and only if R^n⊆R for ever positive integer ​n b) Prove or disprove that a partial order cannot have a cycle.
Let F = {A ⊆ Z : |A| < ∞} be the set of all finite...
Let F = {A ⊆ Z : |A| < ∞} be the set of all finite sets of integers. Let R be the relation on F defined by A R B if and only if |A| = |B|. (a) Prove or disprove: R is reflexive. (b) Prove or disprove: R is irreflexive. (c) Prove or disprove: R is symmetric. (d) Prove or disprove: R is antisymmetric. (e) Prove or disprove: R is transitive. (f) Is R an equivalence relation? Is...
Prove that The set P of all prime numbers is a closed subset of R but...
Prove that The set P of all prime numbers is a closed subset of R but not an open subset of R.
Let A, B be sets and f: A -> B. For any subsets X,Y subset of...
Let A, B be sets and f: A -> B. For any subsets X,Y subset of A, X is a subset of Y iff f(x) is a subset of f(Y). Prove your answer. If the statement is false indicate an additional hypothesis the would make the statement true.
Suppose that X is complete. Show that a subset Y of X is complete if Y...
Suppose that X is complete. Show that a subset Y of X is complete if Y is closed
Determine whether the following is reflexive, symmetric, antisymmetric, transitive, and/or a partial order: (x, y) ∈...
Determine whether the following is reflexive, symmetric, antisymmetric, transitive, and/or a partial order: (x, y) ∈ R if 3 divides x – y
let A be a nonempty subset of R that is bounded below. Prove that inf A...
let A be a nonempty subset of R that is bounded below. Prove that inf A = -sup{-a: a in A}
Prove: A nonempty subset C⊆R is closed if and only if there is a continuous function...
Prove: A nonempty subset C⊆R is closed if and only if there is a continuous function g:R→R such that C=g-1(0).
A function f on a measurable subset E of Rd is measurable if for all a...
A function f on a measurable subset E of Rd is measurable if for all a in R, the set f-1([-∞,a)) = {x in E: f(x) < a} is measurable Prove or disprove the following functions are measurable: (a) f(x) = 8 (b) f(x) = x + 2 (c) f(x) = 3x (d) f(x) = x2
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT