Question

Prove that The set P of all prime numbers is a closed subset of R but...

Prove that The set P of all prime numbers is a closed subset of R but not an open subset of R.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove: A nonempty subset C⊆R is closed if and only if there is a continuous function...
Prove: A nonempty subset C⊆R is closed if and only if there is a continuous function g:R→R such that C=g-1(0).
Prove Corollary 4.22: A set of real numbers E is closed and bounded if and only...
Prove Corollary 4.22: A set of real numbers E is closed and bounded if and only if every infinite subset of E has a point of accumulation that belongs to E. Use Theorem 4.21: [Bolzano-Weierstrass Property] A set of real numbers is closed and bounded if and only if every sequence of points chosen from the set has a subsequence that converges to a point that belongs to E. Must use Theorem 4.21 to prove Corollary 4.22 and there should...
Let p and q be any two distinct prime numbers and define the relation a R...
Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q. For this relation R: Prove that R is an equivalence relation. you may use the following lemma: If p is prime and p|mn, then p|m or p|n
Let E⊆R (R: The set of all real numbers) Prove that E is sequentially compact if...
Let E⊆R (R: The set of all real numbers) Prove that E is sequentially compact if and only if E is compact
Let p and q be any two distinct prime numbers and define the relation a R...
Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q. I need to prove that: a) R is an equivalence relation. (which I have) b) The equivalence classes of R correspond to the elements of  ℤpq. That is: [a] = [b] as equivalence classes of R if and only if [a] = [b] as elements of ℤpq I...
Using field axioms and order axioms prove the following theorems (i) The sets R (real numbers),...
Using field axioms and order axioms prove the following theorems (i) The sets R (real numbers), P (positive numbers) and [1, infinity) are all inductive (ii) N (set of natural numbers) is inductive. In particular, 1 is a natural number (iii) If n is a natural number, then n >= 1 (iv) (The induction principle). If M is a subset of N (set of natural numbers) then M = N The following definitions are given: A subset S of R...
Suppose that E is a closed connected infinite subset of a metric space X. Prove that...
Suppose that E is a closed connected infinite subset of a metric space X. Prove that E is a perfect set.
Prove that in R^n with the usual topology, if a set is closed and bounded then...
Prove that in R^n with the usual topology, if a set is closed and bounded then it is compact.
Prove the following in the plane. a.) The complement of a closed set is open. b.)...
Prove the following in the plane. a.) The complement of a closed set is open. b.) The complement of an open set is closed.
Are there any integers p such that p > 1, and such that all three numbers...
Are there any integers p such that p > 1, and such that all three numbers p, p+2 and p+4 are prime numbers? If there are such triples, prove that you have all of them; if there are no such triples, prove why not.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT