Question

[A] = [x] [B] [x] [x] = ??? [A], [B], and [x] are 2x2 matrices, and...

[A] = [x] [B] [x]

[x] = ???

[A], [B], and [x] are 2x2 matrices, and [A] and [B] are known. find [x] in terms of [A] and [B]


they are invertible. state any other assumltions

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove or disprove: GL2(R), the set of invertible 2x2 matrices, with operations of matrix addition and...
Prove or disprove: GL2(R), the set of invertible 2x2 matrices, with operations of matrix addition and matrix multiplication is a ring. Prove or disprove: (Z5,+, .), the set of invertible 2x2 matrices, with operations of matrix addition and matrix multiplication is a ring.
Suppose A and B are invertible matrices, with A being m x m and B being...
Suppose A and B are invertible matrices, with A being m x m and B being n x n. For any m x n matrix C and any n x m matrix D, show that : a) (A + CBD)-1 = A-1- A-1C(B-1 + DA-1C)-1DA-1 b) If A, B and A + B are all m x m invertible matrices, then deduce from (a) above that (A + B)-1 = A-1 - A-1(B-1 + A-1)-1A-1
Show/Prove that every invertible square (2x2) matrix is a product of at most four elementary matrices
Show/Prove that every invertible square (2x2) matrix is a product of at most four elementary matrices
If I prove Det(A)Det(B) = Det(AB) for matrices A and B when A and B are...
If I prove Det(A)Det(B) = Det(AB) for matrices A and B when A and B are 2x2 matrices, can I use that to show that Det(A)Det(B) = Det(AB) for any n x n matrix? If so how?
Suppose A and B are invertible matrices in Mn(R) and that A + B is also...
Suppose A and B are invertible matrices in Mn(R) and that A + B is also invertible. Show that C = A-1 + B-1 is also invertible.
Linear Algebra question:Suppose A and B are invertible matrices,with A being m*m and B n*n.For any...
Linear Algebra question:Suppose A and B are invertible matrices,with A being m*m and B n*n.For any m*n matrix C and any n*m matrix D,show that: a)(A+CBD)-1-A-1C(B-1+ DA-1C)-1DA-1 b) If A,B and A+B are all m*m invertible matrices,then deduce from a) above that (A+B)-1=A-1-A-1(B-1+A-1)-1A-1
Let A, B ? Mn×n be invertible matrices. Prove the following statement: Matrix A is similar...
Let A, B ? Mn×n be invertible matrices. Prove the following statement: Matrix A is similar to B if and only if there exist matrices X, Y ? Mn×n so that A = XY and B = Y X.
Let G be the set of all 2x2 matrices [a a a a] such that a...
Let G be the set of all 2x2 matrices [a a a a] such that a is in the reals and a does not equal 0. Prove or disprove that G is a group under matrix multiplication.
A and B are two m*n matrices. a. Show that B is invertible. b. Show that...
A and B are two m*n matrices. a. Show that B is invertible. b. Show that Nullsp(A)=Nullsp(BA)
1. Find the orthogonal projection of the matrix [[3,2][4,5]] onto the space of diagonal 2x2 matrices...
1. Find the orthogonal projection of the matrix [[3,2][4,5]] onto the space of diagonal 2x2 matrices of the form lambda?I.   [[4.5,0][0,4.5]]  [[5.5,0][0,5.5]]  [[4,0][0,4]]  [[3.5,0][0,3.5]]  [[5,0][0,5]]  [[1.5,0][0,1.5]] 2. Find the orthogonal projection of the matrix [[2,1][2,6]] onto the space of symmetric 2x2 matrices of trace 0.   [[-1,3][3,1]]  [[1.5,1][1,-1.5]]  [[0,4][4,0]]  [[3,3.5][3.5,-3]]  [[0,1.5][1.5,0]]  [[-2,1.5][1.5,2]]  [[0.5,4.5][4.5,-0.5]]  [[-1,6][6,1]]  [[0,3.5][3.5,0]]  [[-1.5,3.5][3.5,1.5]] 3. Find the orthogonal projection of the matrix [[1,5][1,2]] onto the space of anti-symmetric 2x2 matrices.   [[0,-1] [1,0]]  [[0,2] [-2,0]]  [[0,-1.5] [1.5,0]]  [[0,2.5] [-2.5,0]]  [[0,0] [0,0]]  [[0,-0.5] [0.5,0]]  [[0,1] [-1,0]] [[0,1.5] [-1.5,0]]  [[0,-2.5] [2.5,0]]  [[0,0.5] [-0.5,0]] 4. Let p be the orthogonal projection of u=[40,-9,91]T onto the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT