Question

Let A, B ? Mn×n be invertible matrices. Prove the following statement: Matrix A is similar...

Let A, B ? Mn×n be invertible matrices. Prove the following statement: Matrix A is similar to B if and only if there exist matrices X, Y ? Mn×n so that A = XY and B = Y X.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let matrices A,B∈Mn×n(R). Show that if A and B are each similar to some diagonal matrix,...
Let matrices A,B∈Mn×n(R). Show that if A and B are each similar to some diagonal matrix, and also have the same eigenvectors (but not necessarily the same eigenvalues), then  AB=BA.
(7) Prove the following statements. (c) If A is invertible and similar to B, then B...
(7) Prove the following statements. (c) If A is invertible and similar to B, then B is invertible and A−1 is similar to B−1 . (d) The trace of a square matrix is the sum of the diagonal entries in A and is denoted by tr A. It can be verified that tr(F G)=tr(GF) for any two n × n matrices F and G. Prove that if A and B are similar, then tr A = tr B
4.4.3. Suppose A and B are n × n matrices. Prove that, if AB is invertible,...
4.4.3. Suppose A and B are n × n matrices. Prove that, if AB is invertible, then A and B are both invertible. Do not use determinants, since we have not seen them yet. Hint: Use Lemma 4.4.4. Lemma 4.4.4. If A ∈ Mm,n(F) and B ∈ Mn,k(F), then rank(AB) ≤ rank(A) and rank(AB) ≤ rank(B).
Let A be an nxn matrix. Prove that A is invertible if and only if rank(A)...
Let A be an nxn matrix. Prove that A is invertible if and only if rank(A) = n.
Prove or disprove: GL2(R), the set of invertible 2x2 matrices, with operations of matrix addition and...
Prove or disprove: GL2(R), the set of invertible 2x2 matrices, with operations of matrix addition and matrix multiplication is a ring. Prove or disprove: (Z5,+, .), the set of invertible 2x2 matrices, with operations of matrix addition and matrix multiplication is a ring.
Suppose A and B are invertible matrices in Mn(R) and that A + B is also...
Suppose A and B are invertible matrices in Mn(R) and that A + B is also invertible. Show that C = A-1 + B-1 is also invertible.
We say two n × n matrices A and B are similar if there is an...
We say two n × n matrices A and B are similar if there is an invertible n × n matrix P such that A = PBP^ -1. a) Show that if A and B are similar n × n matrices, then they must have the same determinant. b) Show that if A and B are similar n × n matrices, then they must have the same eigenvalues. c) Give an example to show that A and B can be...
Show/Prove that every invertible square (2x2) matrix is a product of at most four elementary matrices
Show/Prove that every invertible square (2x2) matrix is a product of at most four elementary matrices
Suppose A and B are invertible matrices, with A being m x m and B being...
Suppose A and B are invertible matrices, with A being m x m and B being n x n. For any m x n matrix C and any n x m matrix D, show that : a) (A + CBD)-1 = A-1- A-1C(B-1 + DA-1C)-1DA-1 b) If A, B and A + B are all m x m invertible matrices, then deduce from (a) above that (A + B)-1 = A-1 - A-1(B-1 + A-1)-1A-1
We say the a matrix A is similar to a matrix B if there is some...
We say the a matrix A is similar to a matrix B if there is some invertible matrix P so that B=P^-1 AP. Show that if A and B are similar matrices and b is an eigenvalue for B, then b is also an eigenvalue for A. How would an eigenvector for B associated with b compare to an eigenvector for A?