Question

Let G be the set of all 2x2 matrices [a a a a] such that a...

Let G be the set of all 2x2 matrices [a a a a] such that a is in the reals and a does not equal 0.

Prove or disprove that G is a group under matrix multiplication.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove or disprove: GL2(R), the set of invertible 2x2 matrices, with operations of matrix addition and...
Prove or disprove: GL2(R), the set of invertible 2x2 matrices, with operations of matrix addition and matrix multiplication is a ring. Prove or disprove: (Z5,+, .), the set of invertible 2x2 matrices, with operations of matrix addition and matrix multiplication is a ring.
Let R*= R\ {0} be the set of nonzero real numbers. Let G= {2x2 matrix: row...
Let R*= R\ {0} be the set of nonzero real numbers. Let G= {2x2 matrix: row 1(a b) row 2 (0 a) | a in R*, b in R} (a) Prove that G is a subgroup of GL(2,R) (b) Prove that G is Abelian
Linear Algebra: Show that the set of all 2 x 2 diagonal matrices is a subspace...
Linear Algebra: Show that the set of all 2 x 2 diagonal matrices is a subspace of M 2x2. I know that a diagonal matrix is a square of n x n matrix whose nondiagonal entries are zero, such as the n x n identity matrix. But could you explain every step of how to prove that this diagonal matrix is a subspace of M 2x2. Thanks.
Show that the set Vof all 3 x 3 matrices with distinct entries also combination of...
Show that the set Vof all 3 x 3 matrices with distinct entries also combination of positive and negative numbers is a vector space if vector addition is defined to be matrix addition and vector scalar multiplication is defined to be matrix scalar multiplication
Show/Prove that every invertible square (2x2) matrix is a product of at most four elementary matrices
Show/Prove that every invertible square (2x2) matrix is a product of at most four elementary matrices
Let F = {A ⊆ Z : |A| < ∞} be the set of all finite...
Let F = {A ⊆ Z : |A| < ∞} be the set of all finite sets of integers. Let R be the relation on F defined by A R B if and only if |A| = |B|. (a) Prove or disprove: R is reflexive. (b) Prove or disprove: R is irreflexive. (c) Prove or disprove: R is symmetric. (d) Prove or disprove: R is antisymmetric. (e) Prove or disprove: R is transitive. (f) Is R an equivalence relation? Is...
Let X be any set and let (G, ·) be a group. Let homset(X, G) be...
Let X be any set and let (G, ·) be a group. Let homset(X, G) be the set of all functions with domain X and codomain G. Prove that (homset(X, G), ∗), where (f ∗ g)(x) := f(x) · g(x), is a group.
The stochastic group Σ(2, ℝ) consists of all those matrices in GL(2, ℝ) whose column sums...
The stochastic group Σ(2, ℝ) consists of all those matrices in GL(2, ℝ) whose column sums are 1; that is, Σ(2, ℝ) consists of all the nonsingular matrices [a c] [b d] with a + b = 1 = c + d Prove that the product of two stochastic matrices is again stochastic, and that the inverse of a stochastic matrix is stochastic. [abstract algebra] NOTE: the [a c] and [b d] is supposed to be a 2x2 matrix with...
#1. Let ? be the set of all diagonal matrices in ?22. Is ? a subspace...
#1. Let ? be the set of all diagonal matrices in ?22. Is ? a subspace of ?22? Justify your conclusion (write a proof).
1. Find the orthogonal projection of the matrix [[3,2][4,5]] onto the space of diagonal 2x2 matrices...
1. Find the orthogonal projection of the matrix [[3,2][4,5]] onto the space of diagonal 2x2 matrices of the form lambda?I.   [[4.5,0][0,4.5]]  [[5.5,0][0,5.5]]  [[4,0][0,4]]  [[3.5,0][0,3.5]]  [[5,0][0,5]]  [[1.5,0][0,1.5]] 2. Find the orthogonal projection of the matrix [[2,1][2,6]] onto the space of symmetric 2x2 matrices of trace 0.   [[-1,3][3,1]]  [[1.5,1][1,-1.5]]  [[0,4][4,0]]  [[3,3.5][3.5,-3]]  [[0,1.5][1.5,0]]  [[-2,1.5][1.5,2]]  [[0.5,4.5][4.5,-0.5]]  [[-1,6][6,1]]  [[0,3.5][3.5,0]]  [[-1.5,3.5][3.5,1.5]] 3. Find the orthogonal projection of the matrix [[1,5][1,2]] onto the space of anti-symmetric 2x2 matrices.   [[0,-1] [1,0]]  [[0,2] [-2,0]]  [[0,-1.5] [1.5,0]]  [[0,2.5] [-2.5,0]]  [[0,0] [0,0]]  [[0,-0.5] [0.5,0]]  [[0,1] [-1,0]] [[0,1.5] [-1.5,0]]  [[0,-2.5] [2.5,0]]  [[0,0.5] [-0.5,0]] 4. Let p be the orthogonal projection of u=[40,-9,91]T onto the...