Question

7.5. Prove the following:(a) lim n→∞ an = a = ⇒ lim n→∞ |an|=|a|. (b) limn→∞an=0...

7.5.

Prove the following:(a) lim n→∞ an = a = ⇒ lim n→∞ |an|=|a|. (b) limn→∞an=0 ⇐ ⇒ lim n→∞|an|=0

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If (xn) ∞ to n=1 is a convergent sequence with limn→∞ xn = 0 prove that...
If (xn) ∞ to n=1 is a convergent sequence with limn→∞ xn = 0 prove that lim n→∞ (x1 + x2 + · · · + xn)/ n = 0 .
prove if lim?→∞ an = a>0 and if lim?→∞ sup bn = b (bn≥0) then lim?→∞...
prove if lim?→∞ an = a>0 and if lim?→∞ sup bn = b (bn≥0) then lim?→∞ sup anbn =ab 0<R<∞ : an∈R
Prove directly from the definition of the limit (b) lim (n−2)/(n+12)=1 c) lim n√8 = 1....
Prove directly from the definition of the limit (b) lim (n−2)/(n+12)=1 c) lim n√8 = 1. (Hint: recall the formula for x^n − 1).
Prove that lim n^k*x^n=0 as n approaches +infinity. Where -1<x<1 and k is in N.
Prove that lim n^k*x^n=0 as n approaches +infinity. Where -1<x<1 and k is in N.
Prove that (n + 1)! < nn whenever n > 3. Conclude that lim as n...
Prove that (n + 1)! < nn whenever n > 3. Conclude that lim as n approaches infinity of n!/nn =0
If (xn) is a sequence of nonzero real numbers and if limn→∞ xn = x where...
If (xn) is a sequence of nonzero real numbers and if limn→∞ xn = x where x does not equal zero; prove that lim n→∞ 1/ xn = 1/x
Prove that if (xn) is a sequence of real numbers, then lim sup|xn| = 0 as...
Prove that if (xn) is a sequence of real numbers, then lim sup|xn| = 0 as n approaches infinity. if and only if the limit of (xN) exists and xn approaches 0.
Telescoping Series. Let {an} ∞ n=0 be a sequence of real numbers converging to zero, limn→∞...
Telescoping Series. Let {an} ∞ n=0 be a sequence of real numbers converging to zero, limn→∞ an = 0. Let bn = an − an+1. Then the series X∞ n=0 bn converges.
Problem 1 Let {an} be a decreasing and bounded sequence. Prove that limn→∞ an exists and...
Problem 1 Let {an} be a decreasing and bounded sequence. Prove that limn→∞ an exists and equals inf{an}.
(§2.1) Let a,b,p,n ∈Z with n > 1. (a) Prove or disprove: If ab ≡ 0...
(§2.1) Let a,b,p,n ∈Z with n > 1. (a) Prove or disprove: If ab ≡ 0 (mod n), then a ≡ 0 (mod n) or b ≡ 0 (mod n). (b) Prove or disprove: Suppose p is a positive prime. If ab ≡ 0 (mod p), then a ≡ 0 (mod p) or b ≡ 0 (mod p).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT