1. Consider the sequences defined as follows.(an)
=(12,13,23,14,24,34,15,25,35,45,16,26,36,46,56,17, . . .),(bn)
=(n2(−1)n)= (−1,4,−9,16, . . .).(i)...
1. Consider the sequences defined as follows.(an)
=(12,13,23,14,24,34,15,25,35,45,16,26,36,46,56,17, . . .),(bn)
=(n2(−1)n)= (−1,4,−9,16, . . .).(i) For each sequence, give its lim
sup and its lim inf. Show your reasoning; definitions are not
required.(ii) For each sequence, determine its set of subsequential
limits. Proofs are not required.
Prove the following statements:
a) If A and B are two positive semidefinite matrices in IR...
Prove the following statements:
a) If A and B are two positive semidefinite matrices in IR ^ n ×
n , then trace (AB) ≥ 0. If, in addition, trace (AB) = 0, then AB =
BA =0
b) Let A and B be two (different) n × n real matrices such that
R(A) = R(B), where R(·) denotes the range of a matrix.
(1) Show that R(A + B) is a subspace of R(A).
(2) Is it always true...