Question

If for integers a, b we define a ∗ b = ab + 1, then: (a)...

If for integers a, b we define

a ∗ b = ab + 1,

then:

(a) The operation ∗ is commutative ?

(b) The operation ∗ is associative ?

Modern Abstract Algebra, please explain, thanx

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If for integers a, b we define a ∗ b = ab + 1, then: (a)...
If for integers a, b we define a ∗ b = ab + 1, then: (a) The operation ∗ is commutative ? (b) The operation ∗ is associative ? Modern Algebra
Define a+b=a+b -1 and a*b=ab-(a+b)+2 Assume that (Z, +,*) is a ring. (a) Prove that the...
Define a+b=a+b -1 and a*b=ab-(a+b)+2 Assume that (Z, +,*) is a ring. (a) Prove that the additative identity is 1? (b) what is the multipicative identity? (Make sure you proe that your claim is true). (c) Prove that the ring is commutative. (d) Prove that the ring is an integral domain. (Abstrat Algebra)
Let a, b be nonzero integers with (a, b) = 1. Compute (a + b, a...
Let a, b be nonzero integers with (a, b) = 1. Compute (a + b, a − b). Justify your answer. (abstract algebra)
(a) If a and b are positive integers, then show that lcm(a, b) ≤ ab. (b)...
(a) If a and b are positive integers, then show that lcm(a, b) ≤ ab. (b) If a and b are positive integers, then show that lcm(a, b) is a multiple of gcd(a, b).
determine conditions on integers a and b for which ab is even. then prove that the...
determine conditions on integers a and b for which ab is even. then prove that the conditions are true.
4. Let a, b, c be integers. (a) Prove if gcd(ab, c) = 1, then gcd(a,...
4. Let a, b, c be integers. (a) Prove if gcd(ab, c) = 1, then gcd(a, c) = 1 and gcd(b, c) = 1. (Hint: use the GCD characterization theorem.) (b) Prove if gcd(a, c) = 1 and gcd(b, c) = 1, then gcd(ab, c) = 1. (Hint: you can use the GCD characterization theorem again but you may need to multiply equations.) (c) You have now proved that “gcd(a, c) = 1 and gcd(b, c) = 1 if and...
Recall from class that we defined the set of integers by defining the equivalence relation ∼...
Recall from class that we defined the set of integers by defining the equivalence relation ∼ on N × N by (a, b) ∼ (c, d) =⇒ a + d = c + b, and then took the integers to be equivalence classes for this relation, i.e. Z = [(a, b)]∼ | (a, b) ∈ N × N . We then proceeded to define 0Z = [(0, 0)]∼, 1Z = [(1, 0)]∼, − [(a, b)]∼ = [(b, a)]∼, [(a, b)]∼...
let g be a group. let h be a subgroup of g. define a~b. if ab^-1...
let g be a group. let h be a subgroup of g. define a~b. if ab^-1 is in h. prove ~ is an equivalence relation on g
(a) Let A ⊂ R be open and B ⊂ R. Define AB = {xy ∈...
(a) Let A ⊂ R be open and B ⊂ R. Define AB = {xy ∈ R : x ∈ A and y ∈ B}. Is AB necessarily open? Why? (b) Let S = {x ∈ R : x is irrational}. Is S closed? Why? Thank you!
The following are attempts to define a binary operation on a set, are they actually binary...
The following are attempts to define a binary operation on a set, are they actually binary operations on the given set? If yes, prove it and if not please provide an explanation. 1) a*b = a-b on S, S is the set Z of integers. 2) a*b = a log b on S, S is the set R+ of positive real numbers 3) a*b = |a+b| on S, S is the set of Real numbers. what I want to know...