Question

Recall from class that we defined the set of integers by defining the equivalence relation ∼...

Recall from class that we defined the set of integers by defining the equivalence relation ∼ on N × N by (a, b) ∼ (c, d) =⇒ a + d = c + b, and then took the integers to be equivalence classes for this relation, i.e. Z = [(a, b)]∼ | (a, b) ∈ N × N . We then proceeded to define 0Z = [(0, 0)]∼, 1Z = [(1, 0)]∼, − [(a, b)]∼ = [(b, a)]∼, [(a, b)]∼ + [(c, d)]∼ = [(a + c, b + d)]∼, and [(a, b)]∼ · [(c, d)]∼ = [(ac + bd, ad + bc)]∼.

1. Show that + is an asociative operation on Z.

2. Show that · is a well-defined operation on Z.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Recall that we have proven that we have the relation “ mod n” on the integers...
Recall that we have proven that we have the relation “ mod n” on the integers where a ≡ b mod n if n | b − a . We call the set of equivalence classes: Z/nZ. Show that addition and multiplication are well-defined on the equivalence classes by showing (a) that you have a definition of addition and multiplication for pairs which matches your intuition and (b) that if you choose different representatives when you add or multiply, the...
Consider the following set S = {(a,b)|a,b ∈ Z,b 6= 0} where Z denotes the integers....
Consider the following set S = {(a,b)|a,b ∈ Z,b 6= 0} where Z denotes the integers. Show that the relation (a,b)R(c,d) ↔ ad = bc on S is an equivalence relation. Give the equivalence class [(1,2)]. What can an equivalence class be associated with?
Let N* be the set of positive integers. The relation ∼ on N* is defined as...
Let N* be the set of positive integers. The relation ∼ on N* is defined as follows: m ∼ n ⇐⇒ ∃k ∈ N* mn = k2 (a) Prove that ∼ is an equivalence relation. (b) Find the equivalence classes of 2, 4, and 6.
In the following two problems, the equivalence classes refer to the equivalence classes under the equivalence...
In the following two problems, the equivalence classes refer to the equivalence classes under the equivalence relation: aRb iff n|(a-b) where n is a fixed integer. Suppose a, b, c, d are elements of the integers such that [a] = [b] and [c] = [d]. 1. Prove [a+d] = [b+c]. 2. Prove [ac] = [bd]
Determine the distance equivalence classes for the relation R is defined on ℤ by a R...
Determine the distance equivalence classes for the relation R is defined on ℤ by a R b if |a - 2| = |b - 2|. I had to prove it was an equivalence relation as well, but that part was not hard. Just want to know if the logic and presentation is sound for the last part: 8.48) A relation R is defined on ℤ by a R b if |a - 2| = |b - 2|. Prove that R...
Define a relation on N x N by (a, b)R(c, d) iff ad=bc a. Show that...
Define a relation on N x N by (a, b)R(c, d) iff ad=bc a. Show that R is an equivalence relation. b. Find the equivalence class E(1, 2)
Let Q be the set {(a, b) ∶ a ∈ Z and b ∈ N}. Define...
Let Q be the set {(a, b) ∶ a ∈ Z and b ∈ N}. Define addition on Q by (a, b) + (c, d) = (ad + bc, bd) and define multiplication by (a, b) ⋅ (c, d) = (ac, bd).
4. Let A={(1,3),(2,4),(-4,-8),(3,9),(1,5),(3,6)}. The relation R is defined on A as follows: For all (a, b),(c,...
4. Let A={(1,3),(2,4),(-4,-8),(3,9),(1,5),(3,6)}. The relation R is defined on A as follows: For all (a, b),(c, d) ∈ A, (a, b) R (c, d) ⇔ ad = bc . R is an equivalence relation. Find the distinct equivalence classes of R.
9e) fix n ∈ ℕ. Prove congruence modulo n is an equivalence relation on ℤ. How...
9e) fix n ∈ ℕ. Prove congruence modulo n is an equivalence relation on ℤ. How many equivalence classes does it have? 9f) fix n ∈ ℕ. Prove that if a ≡ b mod n and c ≡ d mod n then a + c ≡b + d mod n. 9g) fix n ∈ ℕ.Prove that if a ≡ b mod n and c ≡ d mod n then ac ≡bd mod n.
Let Q be the set {(a, b) ∶ a ∈ Z and b ∈ N}. Let...
Let Q be the set {(a, b) ∶ a ∈ Z and b ∈ N}. Let (a, b), (c, d) ∈ Q. Show that (a, b) ∼ (c, d) if and only if ad − bc = 0 defines an equivalence relation on Q.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT