Question

Prove that for positive integers a and b, gcd(a,b)lcm(a,b) = ab. There are nice proofs that...

Prove that for positive integers a and b, gcd(a,b)lcm(a,b) = ab. There are nice proofs that do not use the prime factorizations of a and b.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(a) If a and b are positive integers, then show that lcm(a, b) ≤ ab. (b)...
(a) If a and b are positive integers, then show that lcm(a, b) ≤ ab. (b) If a and b are positive integers, then show that lcm(a, b) is a multiple of gcd(a, b).
4. Let a, b, c be integers. (a) Prove if gcd(ab, c) = 1, then gcd(a,...
4. Let a, b, c be integers. (a) Prove if gcd(ab, c) = 1, then gcd(a, c) = 1 and gcd(b, c) = 1. (Hint: use the GCD characterization theorem.) (b) Prove if gcd(a, c) = 1 and gcd(b, c) = 1, then gcd(ab, c) = 1. (Hint: you can use the GCD characterization theorem again but you may need to multiply equations.) (c) You have now proved that “gcd(a, c) = 1 and gcd(b, c) = 1 if and...
prove that if gcd(a,b)=1 then gcd (a-b,a+b,ab)=1
prove that if gcd(a,b)=1 then gcd (a-b,a+b,ab)=1
(a) If a and b are positive integers, then show that gcd(a, b) ≤ a and...
(a) If a and b are positive integers, then show that gcd(a, b) ≤ a and gcd(a, b) ≤ b. (b) If a and b are positive integers, then show that a and b are multiples of gcd(a, b).
1. (a) Let a, b and c be positive integers. Prove that gcd(ac, bc) = c...
1. (a) Let a, b and c be positive integers. Prove that gcd(ac, bc) = c x gcd(a, b). (Note that c gcd(a, b) means c times the greatest common division of a and b) (b) What is the greatest common divisor of a − 1 and a + 1? (There are two different cases you need to consider.)
Given that the gcd(a, m) =1 and gcd(b, m) = 1. Prove that gcd(ab, m) =1
Given that the gcd(a, m) =1 and gcd(b, m) = 1. Prove that gcd(ab, m) =1
Prove that if a|n and b|n and gcd(a,b) = 1 then ab|n.
Prove that if a|n and b|n and gcd(a,b) = 1 then ab|n.
Prove that for all non-zero integers a and b, gcd(a, b) = 1 if and only...
Prove that for all non-zero integers a and b, gcd(a, b) = 1 if and only if gcd(a, b^2 ) = 1
Show that gcd(a + b, lcm(a, b)) = gcd(a, b) for all a, b ∈ Z.
Show that gcd(a + b, lcm(a, b)) = gcd(a, b) for all a, b ∈ Z.
Prove Euler’s theorem: if n and a are positive integers with gcd(a,n)=1, then aφ(n)≡1 modn, where...
Prove Euler’s theorem: if n and a are positive integers with gcd(a,n)=1, then aφ(n)≡1 modn, where φ(n) is the Euler’s function of n.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT