Question

Exercise 3. Let Wn be the graph obtained from the cycle graph Cn by adding one...

Exercise 3. Let Wn be the graph obtained from the cycle graph Cn by adding one new vertex which is adjacent to every vertex of Cn. Prove that for n ≥ 3, Wn does not have an Eulerian trail.

Homework Answers

Answer #1

Note that each of the n vertices belonging to the original cycle now has degree 3 and the central vertex has degree n

As a vertex has degree 3, this means in an Eularian trial, exactly one edge is used to get into the vertex, one edge to go out. And another edge gets in. But as the degree is 3, there can't be another edge to get out of this vertex. So this vertex is either the starting point or the end point.

But as each of the must be either a starting point or an end point. Since there is exactly one starting and one end point, it is impossible that each of the vertices is a starting/ending point

Thus, an Eularian trial is impossible

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Draw an undirected graph with 6 vertices that has an Eulerian Cycle and a Hamiltonian Cycle.  The...
Draw an undirected graph with 6 vertices that has an Eulerian Cycle and a Hamiltonian Cycle.  The degree of each vertex must be greater than 2.  List the degrees of the vertices, draw the Hamiltonian Cycle on the graph and give the vertex list of the Eulerian Cycle. Draw a Bipartite Graph with 10 vertices that has an Eulerian Path and a Hamiltonian Cycle.  The degree of each vertex must be greater than 2.  List the degrees of the vertices, draw the Hamiltonian Cycle...
Let T be a minimum spanning tree of graph G obtained by Prim’s algorithm. Let Gnew...
Let T be a minimum spanning tree of graph G obtained by Prim’s algorithm. Let Gnew be a graph obtained by adding to G a new vertex and some edges, with weights, connecting the new vertex to some vertices in G. Can we construct a minimum spanning tree of Gnew by adding one of the new edges to T ? If you answer yes, explain how; if you answer no, explain why not.
Let G be a simple graph in which all vertices have degree four. Prove that it...
Let G be a simple graph in which all vertices have degree four. Prove that it is possible to color the edges of G orange or blue so that each vertex is adjacent to two orange edges and two blue edges. Hint: The graph G has a closed Eulerian walk. Walk along it and color the edges alternately orange and blue.
Let G be a graph or order n with independence number α(G) = 2. (a) Prove...
Let G be a graph or order n with independence number α(G) = 2. (a) Prove that if G is disconnected, then G contains K⌈ n/2 ⌉ as a subgraph. (b) Prove that if G is connected, then G contains a path (u, v, w) such that uw /∈ E(G) and every vertex in G − {u, v, w} is adjacent to either u or w (or both).
Let n be a positive integer, and let Hn denote the graph whose vertex set is...
Let n be a positive integer, and let Hn denote the graph whose vertex set is the set of all n-tuples with coordinates in {0, 1}, such that vertices u and v are adjacent if and only if they differ in one position. For example, if n = 3, then (0, 0, 1) and (0, 1, 1) are adjacent, but (0, 0, 0) and (0, 1, 1) are not. Answer the following with brief justification (formal proofs not necessary): a....
Let G be the graph obtained by erasing one edge from K5. What is the chromatic...
Let G be the graph obtained by erasing one edge from K5. What is the chromatic number of G? Prove your answer.
Let ? be a connected graph with at least one edge. (a) Prove that each vertex...
Let ? be a connected graph with at least one edge. (a) Prove that each vertex of ? is saturated by some maximum matching in ?. (b) Prove or disprove the following: Every edge of ? is in some maximum matching of ?.
For which values of n ≥ 3 do these graphs have an Euler cycle? (a) Complete...
For which values of n ≥ 3 do these graphs have an Euler cycle? (a) Complete graph Kn (b) Cycle graph Cn (c) Complete bipartite graph Kn,n
Question 38 A simple connected graph with 7 vertices has 3 vertices of degree 1, 3...
Question 38 A simple connected graph with 7 vertices has 3 vertices of degree 1, 3 vertices of degree 2 and 1 vertex of degree 3. How many edges does the graph have? Question 29 Use two of the following sets for each part below. Let X = {a, b, c}, Y = {1, 2, 3, 4} and Z = {s, t}. a) Using ordered pairs define a function that is one-to-one but not onto. b) Using ordered pairs define...
Let G be a simple graph having at least one edge, and let L(G) be its...
Let G be a simple graph having at least one edge, and let L(G) be its line graph. (a) Show that χ0(G) = χ(L(G)). (b) Assume that the highest vertex degree in G is 3. Using the above, show Vizing’s Theorem for G. You may use any theorem from class involving the chromatic number, but no theorem involving the chromatic index