Question

Consider a transformation T : R2x2 -> R2x2 such that T(M) = MT . This is...

Consider a transformation T : R2x2 -> R2x2 such that T(M) = MT . This is in fact a linear transformation. Based on this, justify if the following
statements are true or not.
a) T . T is the identity transformation.
b) The kernel of T is the zero matrix.
c) Range T = R2x2
d) T(M) =-M is impossible.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the transformation, T : P1 → P2 defined by T(ax + b) = ax2 +...
Consider the transformation, T : P1 → P2 defined by T(ax + b) = ax2 + ax + a (a) Find the image of 2x + 1. (b) Find another element of P1 that has the same image. (c) Is T a one-to-one transformation? Why or why not? (d) Find ker(T) and determine the basis for ker(T). What is the dimension of kernel(T)? (e) Find range(T) and determine a basis for range(T). What is the dimension of range(T)?
Consider the transformation T: R2 -> R3 defined by T(x,y) = (x-y,x+y,x+2y) Answer the Following a)Find...
Consider the transformation T: R2 -> R3 defined by T(x,y) = (x-y,x+y,x+2y) Answer the Following a)Find the Standard Matrix A for the linear transformation b)Find T([1 -2]) c) determine if c = [0 is in the range of the transformation T 2 3] Please explain as much as possible this is a test question that I got no points on. Now studying for the final and trying to understand past test questions.
Problem 2. (20 pts.) show that T is a linear transformation by finding a matrix that...
Problem 2. (20 pts.) show that T is a linear transformation by finding a matrix that implements the mapping. Note that x1, x2, ... are not vectors but are entries in vectors. (a) T(x1, x2, x3, x4) = (0, x1 + x2, x2 + x3, x3 + x4) (b) T(x1, x2, x3, x4) = 2x1 + 3x3 − 4x4 (T : R 4 → R) Problem 3. (20 pts.) Which of the following statements are true about the transformation matrix...
(12) (after 3.3) (a) Find a linear transformation T : R2 → R2 such that T...
(12) (after 3.3) (a) Find a linear transformation T : R2 → R2 such that T (x) = Ax that reflects a vector (x1, x2) about the x2-axis. (b) Find a linear transformation S : R2 → R2 such that T(x) = Bx that rotates a vector (x1, x2) counterclockwise by 135 degrees. (c) Find a linear transformation (with domain and codomain) that has the effect of first reflecting as in (a) and then rotating as in (b). Give the...
8. Consider a 4 × 2 matrix A and a 2 × 5 matrix B ....
8. Consider a 4 × 2 matrix A and a 2 × 5 matrix B . (a) What are the possible dimensions of the null space of AB? Justify your answer. (b) What are the possible dimensions of the range of AB Justify your answer. (c) Can the linear transformation define by A be one to one? Justify your answer. (d) Can the linear transformation define by B be onto? Justify your answer.
1) Let T : V —> W be a linear transformation with dim(V) = m and...
1) Let T : V —> W be a linear transformation with dim(V) = m and dim(W) = n. For which of the following conditions is T one-to-one? (A) m>n (B) range(T)=Wandm=n (C) nullity(T) = m (D) rank(T)=m-1andn>m 2) For which of the linear transformations is nullity (T) = 0 ? Why? (A)T:R3 —>R8 (B)T:P3 —>P3 (C)T:M23 —>M33 (D)T:R5 —>R2 withrank(T)=2 withrank(T)=3 withrank(T)=6 withrank(T)=1
Determine whether or not the transformation T is linear. If the transformation is linear, find the...
Determine whether or not the transformation T is linear. If the transformation is linear, find the associated representation matrix (with respect to the standard basis). (a) T ( x , y ) = ( y , x + 2 ) (b) T ( x , y ) = ( x + y , 0 )
Let e1, . . . , en be the n elementary vectors in Rn. Consider the...
Let e1, . . . , en be the n elementary vectors in Rn. Consider the linear transfor- mation T : Rn → Rn satisfying the following equations: T(e1) = e1−e2 T(e2) = e2−e3 . . T(en) = en−e1. (a) What is ker(T)? (b) What is im(T)? (c) Let In : Rn → Rn be the identity linear transformation. Is the linear transformation T − In invertible? Justify your answer. (If it is invertible, you do not need to solve...
409- Which one is correct about the range of a transformation T which has the standard...
409- Which one is correct about the range of a transformation T which has the standard matrix A? It is the set of all linear combinations of the rows of A It is the span of the columns of A It is a subset of the domain of A All are correct
Consider the mapping R^3 to R^3 T[x,y,z] = [x-2z, x+y-z, 2y] a) Show that T is...
Consider the mapping R^3 to R^3 T[x,y,z] = [x-2z, x+y-z, 2y] a) Show that T is a linear Transformation b) Find the Kernel of T Note: Step by step please. Much appreciated.