Question

(12) (after 3.3) (a) Find a linear transformation T : R2 → R2 such that T...

(12) (after 3.3)
(a) Find a linear transformation T : R2 → R2 such that T (x) = Ax that reflects a
vector (x1, x2) about the x2-axis.
(b) Find a linear transformation S : R2 → R2 such that T(x) = Bx that rotates a
vector (x1, x2) counterclockwise by 135 degrees.
(c) Find a linear transformation (with domain and codomain) that has the effect
of first reflecting as in (a) and then rotating as in (b). Give the matrix of this
transformation explicitly. How is this transformation related to T and S?
(d) Find the matrix representing the linear transformation that first rotates as in (b), then reflects as in (a), and then rotates backwards (i.e., clockwise by 135
degrees).
(e) What matrix do you get if you repeat the sequence in part (d) ten times?
Write this matrix in terms of A and B. Can you write this matrix explicitly?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let T be the linear transformation from R2 to R2, that rotates a vector clockwise by...
Let T be the linear transformation from R2 to R2, that rotates a vector clockwise by 60◦ about the origin, then reflects it about the line y = x, and then reflects it about the x-axis. a) Find the standard matrix of the linear transformation T. b) Determine if the transformation T is invertible. Give detailed explanation. If T is invertible, find the standard matrix of the inverse transformation T−1. Please show all steps clearly so I can follow your...
3.) Find the linear transformation T : R2 to R2 described geometrically by "first rotate counter-clockwise...
3.) Find the linear transformation T : R2 to R2 described geometrically by "first rotate counter-clockwise by 60 degrees, then reflect across the line y = x, then scale vectors by a factor of 5". Is this linear transformation invertible? If so, find the matrix of the inverse transformation.
(a) Let T be any linear transformation from R2 to R2 and v be any vector...
(a) Let T be any linear transformation from R2 to R2 and v be any vector in R2 such that T(2v) = T(3v) = 0. Determine whether the following is true or false, and explain why: (i) v = 0, (ii) T(v) = 0. (b) Find the matrix associated to the geometric transformation on R2 that first reflects over the y-axis and then contracts in the y-direction by a factor of 1/3 and expands in the x direction by a...
Find the matrix A in the linear transformation y = Ax,where a point x = [x1,x2]^T...
Find the matrix A in the linear transformation y = Ax,where a point x = [x1,x2]^T is projected on the x2 axis.That is,a point x = [x1,x2]^T is projected on to [0,x2]^T . Is A an orthogonal matrix ?I any case,find the eigen values and eigen vectors of A .
Problem 2. (20 pts.) show that T is a linear transformation by finding a matrix that...
Problem 2. (20 pts.) show that T is a linear transformation by finding a matrix that implements the mapping. Note that x1, x2, ... are not vectors but are entries in vectors. (a) T(x1, x2, x3, x4) = (0, x1 + x2, x2 + x3, x3 + x4) (b) T(x1, x2, x3, x4) = 2x1 + 3x3 − 4x4 (T : R 4 → R) Problem 3. (20 pts.) Which of the following statements are true about the transformation matrix...
3. Find the linear transformation T : R2 → R2 described geometrically by “first rotate coun-...
3. Find the linear transformation T : R2 → R2 described geometrically by “first rotate coun- terclockwise by 60◦, then reflect across the line y = x, then scale vectors by a factor of 5”. Is this linear transformation invertible? If so, find the matrix of the inverse transformation.
Find Eigenvalues and Eigenspaces for matrix: The 2 × 2 matrix AT associated to the linear...
Find Eigenvalues and Eigenspaces for matrix: The 2 × 2 matrix AT associated to the linear transformation T : R2 → R2 which rotates a vector π/4-radians then reflects it about the x-axis.
Assume that T is a linear Transformation. a) Find the Standard matrix of T is T:...
Assume that T is a linear Transformation. a) Find the Standard matrix of T is T: R2 -> R3 first rotate point through (pie)/2 radian (counterclock-wise) and then reflects points through the horizontal x-axis b) Use part a to find the image of point (1,1) under the transformation T Please explain as much as possible. This was a past test question that I got no points on. I'm study for the final and am trying to understand past test questions.
Find the matrix of the linear transformation which reflects every vector across the y-axis and then...
Find the matrix of the linear transformation which reflects every vector across the y-axis and then rotates every vector through the angle π/3.
Problem 2. Show that T is a linear transformation by finding a matrix that implements the...
Problem 2. Show that T is a linear transformation by finding a matrix that implements the mapping. Note that x1, x2, ... are not vectors but are entries in vectors. (a) T(x1, x2, x3, x4) = (0, x1 + x2, x2 + x3, x3 + x4) (b) T(x1, x2, x3, x4) = 2x1 + 3x3 − 4x4 (T : R4 → R)​ Please show T is a linear transformation for part (a) and (b).