Question

Suppose u and v are two vertices in a graph G with ecc(u) = m, ecc(v)...

Suppose u and v are two vertices in a graph G with ecc(u) = m, ecc(v) = n. Prove: d(u, v) ≥ |m − n|.

Homework Answers

Answer #1

Without loss of generality, we assume that , otherwise, we will simply relabel the vertices and .

Since , so, there exists a vertex such that

Now,

Since , we obtain

Therefore, we have

Hence proved.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let u and v be distinct vertices in a graph G. Prove that there is a...
Let u and v be distinct vertices in a graph G. Prove that there is a walk from ? to ? if and only if there is a path from ? to ?.
Define on the vertices of a graph G u ≈ v if the distance d(u, v)...
Define on the vertices of a graph G u ≈ v if the distance d(u, v) is even. Is this an equivalence relation? If you say yes than show that it satisfies all properties. If you say no than show me which ones are satisfied and which are not. Justify your answers.
Exercise 10.5.4: Edge connectivity between two vertices. Two vertices v and w in a graph G...
Exercise 10.5.4: Edge connectivity between two vertices. Two vertices v and w in a graph G are said to be 2-edge-connected if the removal of any edge in the graph leaves v and w in the same connected component. (a) Prove that G is 2-edge-connected if every pair of vertices in G are 2-edge-connected.
Let G = (V,E) be a graph with n vertices and e edges. Show that the...
Let G = (V,E) be a graph with n vertices and e edges. Show that the following statements are equivalent: 1. G is a tree 2. G is connected and n = e + 1 3. G has no cycles and n = e + 1 4. If u and v are vertices in G, then there exists a unique path connecting u and v.
A triangle in a graph G=(V,E)is a 3-cycle; i.e. a set of three vertices {u,v,w}such that...
A triangle in a graph G=(V,E)is a 3-cycle; i.e. a set of three vertices {u,v,w}such that (u,v),(v,w),(u,w)∈E . Present an O(n3) Algortihm that will list all triangles.
10.-Construct a connected bipartite graph that is not a tree with vertices Q,R,S,T,U,V,W. What is the...
10.-Construct a connected bipartite graph that is not a tree with vertices Q,R,S,T,U,V,W. What is the edge set? Construct a bipartite graph with vertices Q,R,S,T,U,V,W such that the degree of S is 4. What is the edge set? 12.-Construct a simple graph with vertices F,G,H,I,J that has an Euler trail, the degree of F is 1 and the degree of G is 3. What is the edge set? 13.-Construct a simple graph with vertices L,M,N,O,P,Q that has an Euler circuit...
Graph Theory Prove that if G is a graph with x(G-v-w)=x(G)-2 for every pair of vertices...
Graph Theory Prove that if G is a graph with x(G-v-w)=x(G)-2 for every pair of vertices v and w in G, then G is complete. Hint: assume G is not complete.
Suppose that ~ is a relation defined on the vertices of a graph G. There are...
Suppose that ~ is a relation defined on the vertices of a graph G. There are three things we have to check to show that u ~ v is an equivalence relation: that it is reflexive, symmetric and transitive. Describe clearly what each one requires.
A K-regular graph G is a graph such that deg(v) = K for all vertices v...
A K-regular graph G is a graph such that deg(v) = K for all vertices v in G. For example, c_9 is a 2-regular graph, because every vertex has degree 2. For some K greater than or equal to 2, neatly draw a simple K-regular graph that has a bridge. If it is impossible, prove why.
Let G be an undirected graph with n vertices and m edges. Use a contradiction argument...
Let G be an undirected graph with n vertices and m edges. Use a contradiction argument to prove that if m<n−1, then G is not connected