Question

How can I prove that if a>b>0, gcd(a,b) = gcd(a-b,b)

How can I prove that if a>b>0, gcd(a,b) = gcd(a-b,b)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that if b doesnt equal 0, and a = bx + cy, then gcd(b,c) <=...
Prove that if b doesnt equal 0, and a = bx + cy, then gcd(b,c) <= gcd(a,b)
Let |a| = n. Prove that <a^i> = <a^j> if and only if gcd(n,i) = gcd...
Let |a| = n. Prove that <a^i> = <a^j> if and only if gcd(n,i) = gcd (n,j) and |a^i| = |a^j| if and only if gcd(n,i) = gcd(n,j).
Prove that if a > b then gcd(a, b) = gcd(b, a mod b).
Prove that if a > b then gcd(a, b) = gcd(b, a mod b).
Prove that if (a,b)=d and k>0, then gcd(ka,kb)=kd.
Prove that if (a,b)=d and k>0, then gcd(ka,kb)=kd.
Prove that if gcd(a,b)=1 and c|(a+b), then gcd(a,c)=gcd(b,c)=1.
Prove that if gcd(a,b)=1 and c|(a+b), then gcd(a,c)=gcd(b,c)=1.
prove that if gcd(a,b)=1 then gcd (a-b,a+b,ab)=1
prove that if gcd(a,b)=1 then gcd (a-b,a+b,ab)=1
4. Let a, b, c be integers. (a) Prove if gcd(ab, c) = 1, then gcd(a,...
4. Let a, b, c be integers. (a) Prove if gcd(ab, c) = 1, then gcd(a, c) = 1 and gcd(b, c) = 1. (Hint: use the GCD characterization theorem.) (b) Prove if gcd(a, c) = 1 and gcd(b, c) = 1, then gcd(ab, c) = 1. (Hint: you can use the GCD characterization theorem again but you may need to multiply equations.) (c) You have now proved that “gcd(a, c) = 1 and gcd(b, c) = 1 if and...
Given that the gcd(a, m) =1 and gcd(b, m) = 1. Prove that gcd(ab, m) =1
Given that the gcd(a, m) =1 and gcd(b, m) = 1. Prove that gcd(ab, m) =1
Let d1= gcd(a,b) and d2=gcd(b,r). Prove that d1=d2 by d2<= d1 and d1<=d2
Let d1= gcd(a,b) and d2=gcd(b,r). Prove that d1=d2 by d2<= d1 and d1<=d2
Prove that for all non-zero integers a and b, gcd(a, b) = 1 if and only...
Prove that for all non-zero integers a and b, gcd(a, b) = 1 if and only if gcd(a, b^2 ) = 1