Question

Prove that if a > b then gcd(a, b) = gcd(b, a mod b).

Prove that if a > b then gcd(a, b) = gcd(b, a mod b).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let gcd(m1,m2) = 1. Prove that a ≡ b (mod m1) and a ≡ b (mod...
Let gcd(m1,m2) = 1. Prove that a ≡ b (mod m1) and a ≡ b (mod m2) if and only if (meaning prove both ways) a ≡ b (mod m1m2). Hint: If a | bc and a is relatively prime to to b then a | c.
Prove that if gcd(a,b)=1 and c|(a+b), then gcd(a,c)=gcd(b,c)=1.
Prove that if gcd(a,b)=1 and c|(a+b), then gcd(a,c)=gcd(b,c)=1.
prove that if gcd(a,b)=1 then gcd (a-b,a+b,ab)=1
prove that if gcd(a,b)=1 then gcd (a-b,a+b,ab)=1
How can I prove that if a>b>0, gcd(a,b) = gcd(a-b,b)
How can I prove that if a>b>0, gcd(a,b) = gcd(a-b,b)
Given that the gcd(a, m) =1 and gcd(b, m) = 1. Prove that gcd(ab, m) =1
Given that the gcd(a, m) =1 and gcd(b, m) = 1. Prove that gcd(ab, m) =1
4. Let a, b, c be integers. (a) Prove if gcd(ab, c) = 1, then gcd(a,...
4. Let a, b, c be integers. (a) Prove if gcd(ab, c) = 1, then gcd(a, c) = 1 and gcd(b, c) = 1. (Hint: use the GCD characterization theorem.) (b) Prove if gcd(a, c) = 1 and gcd(b, c) = 1, then gcd(ab, c) = 1. (Hint: you can use the GCD characterization theorem again but you may need to multiply equations.) (c) You have now proved that “gcd(a, c) = 1 and gcd(b, c) = 1 if and...
Prove that if ? ≡ ? (mod n) and ? ≡ ? (mod n), then ?...
Prove that if ? ≡ ? (mod n) and ? ≡ ? (mod n), then ? ≡ ? (mod n). This proves that congruence mod n is transitive. and : Prove that if ? ≡ ? (mod n) and ? ≡ ? (mod n), then a) ? + ? ≡ ? + ? (mod n) b) ?? ≡ ?? (mod n)
Prove: Let n ∈ N, a ∈ Z, and gcd(a,n) = 1. For i,j ∈ N,...
Prove: Let n ∈ N, a ∈ Z, and gcd(a,n) = 1. For i,j ∈ N, aj ≡ ai (mod n) if and only if j ≡ i (mod ordn(a)). Where ordn(a) represents the order of a modulo n. Be sure to prove both the forward and backward direction.
Prove that if b doesnt equal 0, and a = bx + cy, then gcd(b,c) <=...
Prove that if b doesnt equal 0, and a = bx + cy, then gcd(b,c) <= gcd(a,b)
Let d1= gcd(a,b) and d2=gcd(b,r). Prove that d1=d2 by d2<= d1 and d1<=d2
Let d1= gcd(a,b) and d2=gcd(b,r). Prove that d1=d2 by d2<= d1 and d1<=d2
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT