Question

Prove that for all non-zero integers a and b, gcd(a, b) = 1 if and only...

Prove that for all non-zero integers a and b, gcd(a, b) = 1 if and only if gcd(a, b^2 ) = 1

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Write a proof for all non-zero integers x and y, if there exist integers n...
1. Write a proof for all non-zero integers x and y, if there exist integers n and m such that xn + ym = 1, then gcd(x, y) = 1. 2. Write a proof for all non-zero integers x and y, gcd(x, y) = 1 if and only if gcd(x, y2) = 1.
4. Let a, b, c be integers. (a) Prove if gcd(ab, c) = 1, then gcd(a,...
4. Let a, b, c be integers. (a) Prove if gcd(ab, c) = 1, then gcd(a, c) = 1 and gcd(b, c) = 1. (Hint: use the GCD characterization theorem.) (b) Prove if gcd(a, c) = 1 and gcd(b, c) = 1, then gcd(ab, c) = 1. (Hint: you can use the GCD characterization theorem again but you may need to multiply equations.) (c) You have now proved that “gcd(a, c) = 1 and gcd(b, c) = 1 if and...
1. (a) Let a, b and c be positive integers. Prove that gcd(ac, bc) = c...
1. (a) Let a, b and c be positive integers. Prove that gcd(ac, bc) = c x gcd(a, b). (Note that c gcd(a, b) means c times the greatest common division of a and b) (b) What is the greatest common divisor of a − 1 and a + 1? (There are two different cases you need to consider.)
Prove that for positive integers a and b, gcd(a,b)lcm(a,b) = ab. There are nice proofs that...
Prove that for positive integers a and b, gcd(a,b)lcm(a,b) = ab. There are nice proofs that do not use the prime factorizations of a and b.
Prove that if gcd(a,b)=1 and c|(a+b), then gcd(a,c)=gcd(b,c)=1.
Prove that if gcd(a,b)=1 and c|(a+b), then gcd(a,c)=gcd(b,c)=1.
prove that if gcd(a,b)=1 then gcd (a-b,a+b,ab)=1
prove that if gcd(a,b)=1 then gcd (a-b,a+b,ab)=1
8. Let a, b be integers. (a) Prove or disprove: a|b ⇒ a ≤ b. (b)...
8. Let a, b be integers. (a) Prove or disprove: a|b ⇒ a ≤ b. (b) Find a condition on a and/or b such that a|b ⇒ a ≤ b. Prove your assertion! (c) Prove that if a, b are not both zero, and c is a common divisor of a, b, then c ≤ gcd(a, b).
Given non-zero integers a, b ∈ Z, let X := {ra + sb | r, s...
Given non-zero integers a, b ∈ Z, let X := {ra + sb | r, s ∈ Z and ra + sb > 0}. Then: GCD(a, b) is the least element in X.
(a) If a and b are positive integers, then show that gcd(a, b) ≤ a and...
(a) If a and b are positive integers, then show that gcd(a, b) ≤ a and gcd(a, b) ≤ b. (b) If a and b are positive integers, then show that a and b are multiples of gcd(a, b).
Given that the gcd(a, m) =1 and gcd(b, m) = 1. Prove that gcd(ab, m) =1
Given that the gcd(a, m) =1 and gcd(b, m) = 1. Prove that gcd(ab, m) =1