Question

Find a basis B for the domain of T such that the matrix for T relative...

Find a basis B for the domain of T such that the matrix for T relative to B is diagonal. T: R3 → R3: T(x, y, z) = (−5x + 2y − 3z, 2x − 2y − 6z, −x − 2y − 3z) B = Incorrect: Your answer is incorrect.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find a basis B for the domain of T such that the matrix for T relative...
Find a basis B for the domain of T such that the matrix for T relative to B is diagonal. T: R3 → R3: T(x, y, z) = (−5x + 2y − 3z, 2x − 2y − 6z, −x − 2y − 3z)
Find a basis B for the domain of T such that the matrix for T relative...
Find a basis B for the domain of T such that the matrix for T relative to B is diagonal. T: R3 → R3: T(x, y, z) = (−4x + 2y − 3z, 2x − y − 6z, −x − 2y − 2z) B =
Suppose A is the matrix for T: R3 → R3 relative to the standard basis. Find...
Suppose A is the matrix for T: R3 → R3 relative to the standard basis. Find the diagonal matrix A' for T relative to the basis B'. A = −1 −2 0 −1 0 0 0 0 1 , B' = {(−1, 1, 0), (2, 1, 0), (0, 0, 1)}
Solve system of equations using matrices. Make a 4x4 matrix and get the diagonal to be...
Solve system of equations using matrices. Make a 4x4 matrix and get the diagonal to be ones and the rest of the numbers to be zeros 2x -3y + z + w = - 4 -x + y + 2z + w = 3 y -3z + 2w = - 5 2x + 2y -z -w = - 4
Consider the matrix transformation T(x,y,z) = (-x+y+z, 2x-y, 18x+y+ 18z) from R3 to R3 Then the...
Consider the matrix transformation T(x,y,z) = (-x+y+z, 2x-y, 18x+y+ 18z) from R3 to R3 Then the sum of the elements of the last row of the standard matrix of T is
Let A equal the 2x2 matrix: [1 -2] [2 -1] and let T=LA R2->R2. (Notice that...
Let A equal the 2x2 matrix: [1 -2] [2 -1] and let T=LA R2->R2. (Notice that this means T(x,y)=(x-2y,2x-y), and that the matrix representation of T with respect to the standard basis is A.) a. Find the matrix representation [T]BB where B={(1,1),(-1,1)} b. Find an invertible 2x2 matrix Q so that [T]B = Q-1AQ
Write the system of equations as an augmented matrix. Then solve the system by putting the...
Write the system of equations as an augmented matrix. Then solve the system by putting the matrix in reduced row echelon form. x+2y−z=-10 2x−3y+2z=2 x+y+3z=0
1. Define T : R 2 → R 2 by T(x, y) = (3x + 2y,...
1. Define T : R 2 → R 2 by T(x, y) = (3x + 2y, 5x + y). (a) Represent T as a matrix with respect to the standard basis for R 2 . (b) First, show that B = {(1, 1),(−2, 5)} is another basis for R 2 . Then, represent T as a matrix with respect to B. (c) Using either (a) or (b), find the kernel of T. (d) Is T an isomorphism? Justify your answer....
Find the coordinate matrix of x relative to the orthonormal basis B in Rn. x =...
Find the coordinate matrix of x relative to the orthonormal basis B in Rn. x = (20, 5, 25), B = {(3/5,4/5,0),(-4/5,3/5,0),(0,0,1)}
Solve a.      x + y + z = 2, x – y + z = 3, x...
Solve a.      x + y + z = 2, x – y + z = 3, x + y + 2z = 0 b.      5x + y – 2z = 2, x + 2y + 3z = 2, 2x – y = 3