Question

1. Define T : R 2 → R 2 by T(x, y) = (3x + 2y,...

1. Define T : R 2 → R 2 by T(x, y) = (3x + 2y, 5x + y).

(a) Represent T as a matrix with respect to the standard basis for R 2 .

(b) First, show that B = {(1, 1),(−2, 5)} is another basis for R 2 . Then, represent T as a matrix with respect to B.

(c) Using either (a) or (b), find the kernel of T.

(d) Is T an isomorphism? Justify your answer.

(e) Find T −1 , if it exists.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the mapping R^3 to R^3 T[x,y,z] = [x-2z, x+y-z, 2y] a) Show that T is...
Consider the mapping R^3 to R^3 T[x,y,z] = [x-2z, x+y-z, 2y] a) Show that T is a linear Transformation b) Find the Kernel of T Note: Step by step please. Much appreciated.
a. Let →u = (x, y, z) ∈ R^3 and define T : R^3 → R^3...
a. Let →u = (x, y, z) ∈ R^3 and define T : R^3 → R^3 as T( →u ) = T(x, y, z) = (x + y, 2z − y, x − z) Find the standard matrix for T and decide whether the map T is invertible. If yes then find the inverse transformation, if no, then explain why. b. Let (x, y, z) ∈ R^3 be given T : R^3 → R^2 by T(x, y, z) = (x...
Define T:R^2 -> R^2 by T(x,y) = (x+3y, -x+5y) and let B' = {(3,1)^T, (1,1)^T}. Find...
Define T:R^2 -> R^2 by T(x,y) = (x+3y, -x+5y) and let B' = {(3,1)^T, (1,1)^T}. Find the matrix A' for T relative to the basis B'.
(x+1)y'=y-1 2) dx+(x/y+(e)?)dy=0 3)ty'+2y=sint 4) y"-4y=-3x²e3x 5) y"-y-2y=1/sinx 6)2x2y"+xy'-2y=0 ea)y=x' b) x=0 2dx/dt-2dy/dt-3x=t; 2
(x+1)y'=y-1 2) dx+(x/y+(e)?)dy=0 3)ty'+2y=sint 4) y"-4y=-3x²e3x 5) y"-y-2y=1/sinx 6)2x2y"+xy'-2y=0 ea)y=x' b) x=0 2dx/dt-2dy/dt-3x=t; 2
2.Use separation of variables to solve (3x^2(1-y^2))/2y with initial condition y(1)=2. 3.State the solution of the...
2.Use separation of variables to solve (3x^2(1-y^2))/2y with initial condition y(1)=2. 3.State the solution of the homogeneous ODE with roots of its characteristic equation of r= 1,1,1,+-7i,3+-5i. 4.Consider the system of linear equations: 2x+6y+z=7 x+2y-z=-1 5x+7y-4z=9 solve this system using: a) Carmer's rule, b)Gauss-Jordan elimination, c) an inverse matrix.
solve for x(t) and y(t): x'=-3x+2y; y'=-3x+4y x(0)=0,y(0)=2
solve for x(t) and y(t): x'=-3x+2y; y'=-3x+4y x(0)=0,y(0)=2
Let A equal the 2x2 matrix: [1 -2] [2 -1] and let T=LA R2->R2. (Notice that...
Let A equal the 2x2 matrix: [1 -2] [2 -1] and let T=LA R2->R2. (Notice that this means T(x,y)=(x-2y,2x-y), and that the matrix representation of T with respect to the standard basis is A.) a. Find the matrix representation [T]BB where B={(1,1),(-1,1)} b. Find an invertible 2x2 matrix Q so that [T]B = Q-1AQ
T: R^3 ----> R^5 such that T(x), then... a. A^-1 is 3x 5 matrix b. the...
T: R^3 ----> R^5 such that T(x), then... a. A^-1 is 3x 5 matrix b. the mapping cannot be onto c. the set of solutions to Ax=0 is infinite d. A has at least 2 free variables e. none of the above
1. Let T(x, y, z) = (x + z, y − 2x, −z + 2y) and...
1. Let T(x, y, z) = (x + z, y − 2x, −z + 2y) and S(x, y, z) = (2y − z, x − z, y + 3x). Use matrices to find the composition S ◦ T. 2. Find an equation of the tangent plane to the graph of x 2 − y 2 − 3z 2 = 5 at (6, 2, 3). 3. Find the critical points of f(x, y) = (x 2 + y 2 )e −y...
Solve the system of linear equations: x-2y+3z=4 2x+y-4z=3 -3x+4y-z=-2 2. Determine whether the lines  x+y=1 and 5x+y=3...
Solve the system of linear equations: x-2y+3z=4 2x+y-4z=3 -3x+4y-z=-2 2. Determine whether the lines  x+y=1 and 5x+y=3 intersect. If they do, find points of intersection.