Question

Let A equal the 2x2 matrix: [1 -2] [2 -1] and let T=LA R2->R2. (Notice that...

Let A equal the 2x2 matrix:

[1 -2]

[2 -1]

and let T=LA R2->R2. (Notice that this means T(x,y)=(x-2y,2x-y), and that the matrix representation of T with respect to the standard basis is A.)

a. Find the matrix representation [T]BB where B={(1,1),(-1,1)}

b. Find an invertible 2x2 matrix Q so that [T]B = Q-1AQ

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let T be the linear transformation from R2 to R2, that rotates a vector clockwise by...
Let T be the linear transformation from R2 to R2, that rotates a vector clockwise by 60◦ about the origin, then reflects it about the line y = x, and then reflects it about the x-axis. a) Find the standard matrix of the linear transformation T. b) Determine if the transformation T is invertible. Give detailed explanation. If T is invertible, find the standard matrix of the inverse transformation T−1. Please show all steps clearly so I can follow your...
Find a basis B for the domain of T such that the matrix for T relative...
Find a basis B for the domain of T such that the matrix for T relative to B is diagonal. T: R3 → R3: T(x, y, z) = (−4x + 2y − 3z, 2x − y − 6z, −x − 2y − 2z) B =
Find a basis B for the domain of T such that the matrix for T relative...
Find a basis B for the domain of T such that the matrix for T relative to B is diagonal. T: R3 → R3: T(x, y, z) = (−5x + 2y − 3z, 2x − 2y − 6z, −x − 2y − 3z)
Suppose that the map h: R2 → R2 is represented by the matrix ( 1 2...
Suppose that the map h: R2 → R2 is represented by the matrix ( 1 2 (second row) 3 4 ) with respect to the basis ε2, find the matrix that represents h with respect to the basis F = {( 1 1 ) , ( 1 −1 )}
Define T:R^2 -> R^2 by T(x,y) = (x+3y, -x+5y) and let B' = {(3,1)^T, (1,1)^T}. Find...
Define T:R^2 -> R^2 by T(x,y) = (x+3y, -x+5y) and let B' = {(3,1)^T, (1,1)^T}. Find the matrix A' for T relative to the basis B'.
Let V = W = R2. Choose the basis B = {x1, x2} of V ,...
Let V = W = R2. Choose the basis B = {x1, x2} of V , where x1 = (2, 3), x2 = (4,−5) and choose the basis D = {y1,y2} of W, where y1 = (1,1), y2 = (−3,4). Find the matrix of the identity linear mapping I : V → W with respect to these bases.
1. Define T : R 2 → R 2 by T(x, y) = (3x + 2y,...
1. Define T : R 2 → R 2 by T(x, y) = (3x + 2y, 5x + y). (a) Represent T as a matrix with respect to the standard basis for R 2 . (b) First, show that B = {(1, 1),(−2, 5)} is another basis for R 2 . Then, represent T as a matrix with respect to B. (c) Using either (a) or (b), find the kernel of T. (d) Is T an isomorphism? Justify your answer....
Find a basis B for the domain of T such that the matrix for T relative...
Find a basis B for the domain of T such that the matrix for T relative to B is diagonal. T: R3 → R3: T(x, y, z) = (−5x + 2y − 3z, 2x − 2y − 6z, −x − 2y − 3z) B = Incorrect: Your answer is incorrect.
1. Let A be the 2x2 matrix in M_{2x2}(C), whose first row is (0,1) and second...
1. Let A be the 2x2 matrix in M_{2x2}(C), whose first row is (0,1) and second row is (-1,0). (a) Show that A is normal. (b) Find (complex) eigenvalues of A. (c) Find an orthogonal basis for C^2, which consists of eigenvectors of A. (d) Find an orthonormal basis for C^2, which consists of eigenvectors of A.
a. Let →u = (x, y, z) ∈ R^3 and define T : R^3 → R^3...
a. Let →u = (x, y, z) ∈ R^3 and define T : R^3 → R^3 as T( →u ) = T(x, y, z) = (x + y, 2z − y, x − z) Find the standard matrix for T and decide whether the map T is invertible. If yes then find the inverse transformation, if no, then explain why. b. Let (x, y, z) ∈ R^3 be given T : R^3 → R^2 by T(x, y, z) = (x...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT