Question

Suppose A is a 2x2 matrix whose eigenvalues all have negative real parts. For the system...

Suppose A is a 2x2 matrix whose eigenvalues all have negative real parts. For the system x 0 = Ax, is the origin stable or unstable?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Assume that all the eigenvalues ​​of A have a negative real part. Show that the linear...
Assume that all the eigenvalues ​​of A have a negative real part. Show that the linear system x ̇ = Ax has at least one non-trivial solution x (t) so that lim x (t) = 0 when t tend to infinite
Suppose A is a real 2x2 matrix with complex eigenvalues α ± i β , β...
Suppose A is a real 2x2 matrix with complex eigenvalues α ± i β , β ≠ 0. It was shown in class that the corresponding eigenvectors will be complex. Suppose that a + i b is an eigenvector for α + i β , for some real vectors a , b . Show that a − i b is an eigenvector corresponding to α − i β . Hint: properties of the complex conjugate may be useful. Please show...
Prove: If A is an n × n symmetric matrix all of whose eigenvalues are nonnegative,...
Prove: If A is an n × n symmetric matrix all of whose eigenvalues are nonnegative, then xTAx ≥ 0 for all nonzero x in the vector space Rn.
5. Suppose A is an n × n matrix, whose entries are all real numbers, that...
5. Suppose A is an n × n matrix, whose entries are all real numbers, that has n distinct real eigenvalues. Explain why R n has a basis consisting of eigenvectors of A. Hint: use the “eigenspaces are independent” lemma stated in class. 6. Unlike the previous problem, let A be a 2 × 2 matrix, whose entries are all real numbers, with only 1 eigenvalue λ. (Note: λ must be real, but don’t worry about why this is true)....
Explain why a continuous time system is stable if the real part of its eigenvalues are...
Explain why a continuous time system is stable if the real part of its eigenvalues are negative.
4. Suppose that we have a linear system given in matrix form as Ax = b,...
4. Suppose that we have a linear system given in matrix form as Ax = b, where A is an m×n matrix, b is an m×1 column vector, and x is an n×1 column vector. Suppose also that the n × 1 vector u is a solution to this linear system. Answer parts a. and b. below. a. Suppose that the n × 1 vector h is a solution to the homogeneous linear system Ax=0. Showthenthatthevectory=u+hisasolutiontoAx=b. b. Now, suppose that...
Find the (real-valued) general solution to the system of ODEs given by: X’=[{-1,-1},{2,-3}]X (X is a...
Find the (real-valued) general solution to the system of ODEs given by: X’=[{-1,-1},{2,-3}]X (X is a vector) -1,-1, is the 1st row of the matrix 2,-3, is the  2nd row of the matrix. Then, determine whether the equilibrium solution x1(t) = 0, x2(t) = 0 is stable, a saddle, or unstable.
Suppose Ax = b 0 is a linear system and A is a square, singular matrix....
Suppose Ax = b 0 is a linear system and A is a square, singular matrix. How many solutions is it possible for the system to have?
Suppose that A is an invertible n by n matrix, with real valued entries. Which of...
Suppose that A is an invertible n by n matrix, with real valued entries. Which of the following statements are true? Select ALL correct answers. Note: three submissions are allowed for this question. A is row equivalent to the identity matrix In.A has fewer than n pivot positions.The equation Ax=0 has only the trivial solution.For some vector b in Rn, the equation Ax=b has no solution.There is an n by n matrix C such that CA=In.None of the above.
Find all stable states for the system xn+1 = Axn, n = 0, 1, 2, .......
Find all stable states for the system xn+1 = Axn, n = 0, 1, 2, .... (A is a 2x2 matrix) A = 0.2 0.5 0.8 0.5
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT