Question

1.) either solve the given system of equations, or else show that there is no solution....

1.) either solve the given system of equations, or else show that there is no solution.

x1 + 2x2 - x3 = 2

2x1 + x2 + x3 = 1

x1 - x2 + 2x3 = -1

2.) determine whether the members of the given set of vectors are linearly independent. If they are linearly dependent, find a linear relation among them.

(a.) x(1) = (1, 1, 0) , x(2) = (0, 1, 1) , x(3) = (1, 0, 1)

(b.) x(1) = (2, 1, 0) , x(2) = (0, 1, 0) , x(3) = (-1, 2, 0)


Homework Answers

Answer #1

This linear algebra problem can be solved in this way

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
in parts a and b use gaussian elimination to solve the systems of linear equations. show...
in parts a and b use gaussian elimination to solve the systems of linear equations. show all steps. a. x1 - 4x2 - x3 + x4 = 3 3x1 - 12 x2 - 3x4 = 12 2x1 - 8x2 + 4x3 - 10x4 = 12 b. x1 + x2 + x3 - x4 = 2 2x1 + 2x2 - 2x3 = 3 2x1 + 2x2 - x4 = 2
Consider the following system of equations. x1- x2+ 3x3 =2 2x1+ x2+ 2x3 =2 -2x1 -2x2...
Consider the following system of equations. x1- x2+ 3x3 =2 2x1+ x2+ 2x3 =2 -2x1 -2x2 +x3 =3 Write a matrix equation that is equivalent to the system of linear equations. (b) Solve the system using the inverse of the coefficient matrix.
solve the following linear system by gauss-jordan method   x1 + x2 - 2x3 + x4 =...
solve the following linear system by gauss-jordan method   x1 + x2 - 2x3 + x4 = 8 3x1 - 2x2 - x4 = 3 -x1 + x2 - x3 + x4 = 2 2x1 - x2 + x3 - 2x4 = -3
Solve the following system of linear equations using the techniques discussed in this section. (If the...
Solve the following system of linear equations using the techniques discussed in this section. (If the system is dependent assign the free variable the parameter t. If the system is inconsistent, enter INCONSISTENT.) x1 − x3 = −4 2x2 − x4 = 0 x1 − 2x2 + x3 = 0 −x3 + x4 = 2 (x1, x2, x3, x4)
by hand, solve the system of equations- LU Factorization -3x1+x2+x3=-2 x1+x2-x3=1 2x1+x2-2x3=1
by hand, solve the system of equations- LU Factorization -3x1+x2+x3=-2 x1+x2-x3=1 2x1+x2-2x3=1
Use Gaussian elimination to solve the following system of linear equations. 2x1 -2x2​​​​​​​ -x3​​​​​​​ +6x4​​​​​​​ -2x5​​​=1...
Use Gaussian elimination to solve the following system of linear equations. 2x1 -2x2​​​​​​​ -x3​​​​​​​ +6x4​​​​​​​ -2x5​​​=1 x1 ​​​​​​​- x2​​​​​​​ +x3​​​​​​​ +2x4​​​​​​​ - x5​​​= 2 4x1 ​​​​​​​-4x2​​​​​​​ -5x3​​​​​​​ +7x4​​​​​​​ -x5​​​=6
Consider the following system of linear equations: 2x1−2x2+4x3 = −10 x1+x2−2x3 = 5 −2x1+x3 = −2...
Consider the following system of linear equations: 2x1−2x2+4x3 = −10 x1+x2−2x3 = 5 −2x1+x3 = −2 Let A be the coefficient matrix and X the solution matrix to the system. Solve the system by first computing A−1 and then using it to find X. You can resize a matrix (when appropriate) by clicking and dragging the bottom-right corner of the matrix.
3. Consider the system of linear equations 3x1 + x2 + 4x3 − x4 = 7...
3. Consider the system of linear equations 3x1 + x2 + 4x3 − x4 = 7 2x1 − 2x2 − x3 + 2x4 = 1 5x1 + 7x2 + 14x3 − 8x4 = 20 x1 + 3x2 + 2x3 + 4x4 = −4 b) Solve this linear system applying Gaussian forward elimination with partial pivoting and back ward substitution, by hand. In (b) use fractions throughout your calculations. (i think x1 = 1, x2= -1, x3 =1, x4=-1, but i...
For parts a and b, find a basis for the solution set of the homogeneous linear...
For parts a and b, find a basis for the solution set of the homogeneous linear systems. Show all algebraic steps. a. x1 + x2 + x3 = 0. x1 - x2 - x3 = 0 b. x1 + 2x2 - 2x3 + x4 = 0. x1 - 2x2 + 2x3 + x4 = 0. for parts c and d use your solutions to parts a and b to find all solutions to the following linear systems. show all algebraic...
Consider the following system of equations. x1+2x2+2x3 − 2x4+2x5 = 5 −2x1 − 4x3+ x4 −...
Consider the following system of equations. x1+2x2+2x3 − 2x4+2x5 = 5 −2x1 − 4x3+ x4 − 10x5 = −11 x1+2x2 − x3+3x5 = 4 1. Represent the system as an augmented matrix. 2. Reduce the matrix to row reduced echelon form. (This can be accomplished by hand or by MATLAB. No need to post code.) 3. Write the set of solutions as a linear combination of vectors in R5. (This must be accomplished by hand using the rref form found...