Question

solve the following linear system by gauss-jordan method   x1 + x2 - 2x3 + x4 =...

solve the following linear system by gauss-jordan method  

x1 + x2 - 2x3 + x4 = 8

3x1 - 2x2 - x4 = 3

-x1 + x2 - x3 + x4 = 2

2x1 - x2 + x3 - 2x4 = -3

Homework Answers

Answer #1

Rewrite the system in matrix form and solve by Gauss-Jordan method:

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3. Consider the system of linear equations 3x1 + x2 + 4x3 − x4 = 7...
3. Consider the system of linear equations 3x1 + x2 + 4x3 − x4 = 7 2x1 − 2x2 − x3 + 2x4 = 1 5x1 + 7x2 + 14x3 − 8x4 = 20 x1 + 3x2 + 2x3 + 4x4 = −4 b) Solve this linear system applying Gaussian forward elimination with partial pivoting and back ward substitution, by hand. In (b) use fractions throughout your calculations. (i think x1 = 1, x2= -1, x3 =1, x4=-1, but i...
Linear Algebra find all the solutions of the linear system using Gaussian Elimination x1-x2+3x3+2x4=1 -x1+x2-2x3+x4=-2 2x1-2x2+7x3+7x4=1
Linear Algebra find all the solutions of the linear system using Gaussian Elimination x1-x2+3x3+2x4=1 -x1+x2-2x3+x4=-2 2x1-2x2+7x3+7x4=1
Use Gauss Elimination with partial pivoting method to find x1, x2,and x3 for the following set...
Use Gauss Elimination with partial pivoting method to find x1, x2,and x3 for the following set of linear equations. You should show all your work in details. Verify your solutions 2X1 + X2 - X3 = 1 5X1 + 2X2 + 2X3 = -4 3X1 + X2 + X3 = 5
1)Solve the system of linear equations, using the Gauss-Jordan elimination method. (If there is no solution,...
1)Solve the system of linear equations, using the Gauss-Jordan elimination method. (If there is no solution, enter NO SOLUTION. If there are infinitely many solutions, express your answer in terms of the parameters t and/or s.) x1 + 2x2 + 8x3 = 6 x1 + x2 + 4x3 = 3 (x1, x2, x3) = 2)Solve the system of linear equations, using the Gauss-Jordan elimination method. (If there is no solution, enter NO SOLUTION. If there are infinitely many solutions, express...
in parts a and b use gaussian elimination to solve the systems of linear equations. show...
in parts a and b use gaussian elimination to solve the systems of linear equations. show all steps. a. x1 - 4x2 - x3 + x4 = 3 3x1 - 12 x2 - 3x4 = 12 2x1 - 8x2 + 4x3 - 10x4 = 12 b. x1 + x2 + x3 - x4 = 2 2x1 + 2x2 - 2x3 = 3 2x1 + 2x2 - x4 = 2
Consider the following system of equations. x1- x2+ 3x3 =2 2x1+ x2+ 2x3 =2 -2x1 -2x2...
Consider the following system of equations. x1- x2+ 3x3 =2 2x1+ x2+ 2x3 =2 -2x1 -2x2 +x3 =3 Write a matrix equation that is equivalent to the system of linear equations. (b) Solve the system using the inverse of the coefficient matrix.
Solve the 3x3 system. x1-x2+x3=3 -2x1+3x2+2x3=7 3x1-3x2+2x3=6
Solve the 3x3 system. x1-x2+x3=3 -2x1+3x2+2x3=7 3x1-3x2+2x3=6
Solve for all 4-tuples (x1, x2, x3, x4) simultaneously satisfying the following equations: 8x1 −9x2 −2x3...
Solve for all 4-tuples (x1, x2, x3, x4) simultaneously satisfying the following equations: 8x1 −9x2 −2x3 −5x4 = 100 9x1 +6x2 −6x3 +9x4 = 60 −3x1 −9x2 +4x3 −2x4 = −52 −7x2 +8x3 +8x4 = −135
Use the Gauss-Jordan reduction to solve the following linear system: x1-x2+5x3=-4 5x1-4x2+3x3=-9 2x1 -34x3=14
Use the Gauss-Jordan reduction to solve the following linear system: x1-x2+5x3=-4 5x1-4x2+3x3=-9 2x1 -34x3=14
by hand, solve the system of equations- LU Factorization -3x1+x2+x3=-2 x1+x2-x3=1 2x1+x2-2x3=1
by hand, solve the system of equations- LU Factorization -3x1+x2+x3=-2 x1+x2-x3=1 2x1+x2-2x3=1