Question

Prove that if f is differentiable and monotonically increasing on D , then f′(x) ≥ 0...

Prove that if f is differentiable and monotonically increasing on D , then f′(x) ≥ 0 for all x ∈ D.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose f is continuous for x is greater than or equal to 0, f'(x) exists for...
Suppose f is continuous for x is greater than or equal to 0, f'(x) exists for x greater than 0, f(0)=0, f' is monotonically increasing. For x greater than 0, put g(x) = f(x)/x and prove that g is monotonically increasing.
Use the formal definition of derivative to prove f(x) = 10|x| is not differentiable at a=0.
Use the formal definition of derivative to prove f(x) = 10|x| is not differentiable at a=0.
Prove or give a counterexample: If f is continuous on R and differentiable on R∖{0} with...
Prove or give a counterexample: If f is continuous on R and differentiable on R∖{0} with limx→0 f′(x) = L, then f is differentiable on R.
4a). Let g be continuous at x = 0. Show that f(x) = xg(x) is differentiable...
4a). Let g be continuous at x = 0. Show that f(x) = xg(x) is differentiable at x = 0 and f'(0) = g(0). 4b). Let f : (a,b) to R and p in (a,b). You may assume that f is differentiable on (a,b) and f ' is continuous at p. Show that f'(p) > 0 then there is delta > 0, such that f is strictly increasing on D(p,delta). Conclude that on D(p,delta) the function f has a differentiable...
Let f : R → R be differentiable with derivative f'. Prove that f(x + h)...
Let f : R → R be differentiable with derivative f'. Prove that f(x + h) = f(x) + f'(x)h + o(h), as h → 0.
Prove that the function f(x) = |x| is not differentiable at zero, and show that the...
Prove that the function f(x) = |x| is not differentiable at zero, and show that the function g(x) = |x|*x is differentiable at zero.
Prove or give a counter example: If f is continuous on R and differentiable on R...
Prove or give a counter example: If f is continuous on R and differentiable on R ∖ { 0 } with lim x → 0 f ′ ( x ) = L , then f is differentiable on R .
Let f be continuous on [ 0 , ∞ ) and differentiable on ( 0 ,...
Let f be continuous on [ 0 , ∞ ) and differentiable on ( 0 , ∞ ) . If f ( 0 ) = 0 and | f ′ ( x ) | ≤ | f ( x ) | for all x > 0 , then f ( x ) = 0 for all x ≥ 0 .
PROVE USING IVT. Suppose f is a differentiable function on [s,t] and suppose f'(s) > 0...
PROVE USING IVT. Suppose f is a differentiable function on [s,t] and suppose f'(s) > 0 > f'(t). Then there's a point p in (s,t) where f'(p)=0.
Let f : R → R be a bounded differentiable function. Prove that for all ε...
Let f : R → R be a bounded differentiable function. Prove that for all ε > 0 there exists c ∈ R such that |f′(c)| < ε.