Question

Let f be continuous on [ 0 , ∞ ) and differentiable on ( 0 ,...

Let f be continuous on [ 0 , ∞ ) and differentiable on ( 0 , ∞ ) . If f ( 0 ) = 0 and | f ′ ( x ) | ≤ | f ( x ) | for all x > 0 , then f ( x ) = 0 for all x ≥ 0 .

Homework Answers

Answer #1

Let f be continuous on [0,) and differentiable on (0,).

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
4a). Let g be continuous at x = 0. Show that f(x) = xg(x) is differentiable...
4a). Let g be continuous at x = 0. Show that f(x) = xg(x) is differentiable at x = 0 and f'(0) = g(0). 4b). Let f : (a,b) to R and p in (a,b). You may assume that f is differentiable on (a,b) and f ' is continuous at p. Show that f'(p) > 0 then there is delta > 0, such that f is strictly increasing on D(p,delta). Conclude that on D(p,delta) the function f has a differentiable...
Let f(x) be a continuous, everywhere differentiable function. What kind information does f'(x) provide regarding f(x)?...
Let f(x) be a continuous, everywhere differentiable function. What kind information does f'(x) provide regarding f(x)? Let f(x) be a continuous, everywhere differentiable function. What kind information does f''(x) provide regarding f(x)? Let f(x) be a continuous, everywhere differentiable function. What kind information does f''(x) provide regarding f'(x)? Let h(x) be a continuous function such that h(a) = m and h'(a) = 0. Is there enough evidence to conclude the point (a, m) must be a maximum or a minimum?...
Prove or give a counterexample: If f is continuous on R and differentiable on R∖{0} with...
Prove or give a counterexample: If f is continuous on R and differentiable on R∖{0} with limx→0 f′(x) = L, then f is differentiable on R.
Prove or give a counter example: If f is continuous on R and differentiable on R...
Prove or give a counter example: If f is continuous on R and differentiable on R ∖ { 0 } with lim x → 0 f ′ ( x ) = L , then f is differentiable on R .
Let f: R -> R and g: R -> R be differentiable, with g(x) ≠ 0...
Let f: R -> R and g: R -> R be differentiable, with g(x) ≠ 0 for all x. Assume that g(x) f'(x) = f(x) g'(x) for all x. Show that there is a real number c such that f(x) = cg(x) for all x. (Hint: Look at f/g.) Let g: [0, ∞) -> R, with g(x) = x2 for all x ≥ 0. Let L be the line tangent to the graph of g that passes through the point...
Theorem 4 states “If f is differentiable at a, then f is continuous at a.” Is...
Theorem 4 states “If f is differentiable at a, then f is continuous at a.” Is the converse also true? Specifically, is the statement “If f is continuous at a, then f is differentiable at a” also true? Defend your reasoning and/or provide an example or counterexample (Hint: Can you find a graphical depiction in the text that shows a continuous function at a point that is not differentiable at that point?)
Let a > 0 and f be continuous on [-a, a]. Suppose that f'(x) exists and...
Let a > 0 and f be continuous on [-a, a]. Suppose that f'(x) exists and f'(x)<= 1 for all x2 ㅌ (-a, a). If f(a) = a and f(-a) =-a. Show that f(0) = 0. Hint: Consider the two cases f(0) < 0 and f(0) > 0. Use mean value theorem to prove that these are impossible cases.
Let f: R --> R be a differentiable function such that f' is bounded. Show that...
Let f: R --> R be a differentiable function such that f' is bounded. Show that f is uniformly continuous.
Suppose that  f   is a twice differentiable function and that its second partial derivatives are continuous....
Suppose that  f   is a twice differentiable function and that its second partial derivatives are continuous. Let  h(t) = f (x(t), y(t))  where  x = 2e^ t  and  y = 2t. Suppose that  fx(2, 0) = 1,  fy(2, 0) = 3,  fxx(2, 0) = 4,  fyy(2, 0) = 1,  and  fxy(2, 0) = 4. Find   d ^2h/ dt ^2  when t = 0.
Suppose that  f   is a twice differentiable function and that its second partial derivatives are continuous....
Suppose that  f   is a twice differentiable function and that its second partial derivatives are continuous. Let  h(t) = f (x(t), y(t))  where  x = 3e ^t  and  y = 2t. Suppose that  fx(3, 0) = 2,  fy(3, 0) = 1,  fxx(3, 0) = 3,  fyy(3, 0) = 2,  and  fxy(3, 0) = 1. Find   d 2h dt 2  when t = 0.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT