Question

PROVE USING IVT. Suppose f is a differentiable function on [s,t] and suppose f'(s) > 0...

PROVE USING IVT. Suppose f is a differentiable function on [s,t] and suppose f'(s) > 0 > f'(t). Then there's a point p in (s,t) where f'(p)=0.

Homework Answers

Answer #1

PLEASE GIVE AN UPVOTE!!!!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
if the function f is differentiable at a, prove the function f is also continuous at...
if the function f is differentiable at a, prove the function f is also continuous at a.
Let z(s,t) z(s,t) be a differentiable function of two variable s and t with continuous first...
Let z(s,t) z(s,t) be a differentiable function of two variable s and t with continuous first partial derivatives. Assume further that s=s(x,y), t=t(x,y) are differentiable functions of variables x and y . (a) find the general chain rule chain rule for (∂z/∂x)y . Your subscripts will be marked. (b) Let equations F(x,y,s,t)=y+x^2+cos(t)−sin(s)+1=0, G(x,y,s,t)=x+y^2−st−2=0, implicitly define s , and t as functions of x and y . Compute ∂s/∂x)y ∂t/∂x)y at the point P(x,y,s,t)=(1,−1,π,0). (c) Let now z(s,t)=s^2+t. By using the...
If f is a differentiable, real-valued function such that f′(c) < 0 and f′′(c) < 0,...
If f is a differentiable, real-valued function such that f′(c) < 0 and f′′(c) < 0, what can be said of f at the point c?
Prove that the function f(x) = |x| is not differentiable at zero, and show that the...
Prove that the function f(x) = |x| is not differentiable at zero, and show that the function g(x) = |x|*x is differentiable at zero.
Suppose that  f   is a twice differentiable function and that its second partial derivatives are continuous....
Suppose that  f   is a twice differentiable function and that its second partial derivatives are continuous. Let  h(t) = f (x(t), y(t))  where  x = 2e^ t  and  y = 2t. Suppose that  fx(2, 0) = 1,  fy(2, 0) = 3,  fxx(2, 0) = 4,  fyy(2, 0) = 1,  and  fxy(2, 0) = 4. Find   d ^2h/ dt ^2  when t = 0.
Suppose that  f   is a twice differentiable function and that its second partial derivatives are continuous....
Suppose that  f   is a twice differentiable function and that its second partial derivatives are continuous. Let  h(t) = f (x(t), y(t))  where  x = 3e ^t  and  y = 2t. Suppose that  fx(3, 0) = 2,  fy(3, 0) = 1,  fxx(3, 0) = 3,  fyy(3, 0) = 2,  and  fxy(3, 0) = 1. Find   d 2h dt 2  when t = 0.
Prove the IVT theorem Prove: If f is continuous on [a,b] and f(a),f(b) have different signs...
Prove the IVT theorem Prove: If f is continuous on [a,b] and f(a),f(b) have different signs then there is an r ∈ (a,b) such that f(r) = 0. Using the claims: f is continuous on [a,b] there exists a left sequence (a_n) that is increasing and bounded and converges to r, and left decreasing sequence and bounded (b_n)=r. limf(a_n)= r= limf(b_n), and f(r)=0.
Let f : R → R be a bounded differentiable function. Prove that for all ε...
Let f : R → R be a bounded differentiable function. Prove that for all ε > 0 there exists c ∈ R such that |f′(c)| < ε.
Prove that a function f(z) which is complex differentiable at a point z0 satisfies the Cauchy-Riemann...
Prove that a function f(z) which is complex differentiable at a point z0 satisfies the Cauchy-Riemann equations at that point.
Prove or give a counterexample: If f is continuous on R and differentiable on R∖{0} with...
Prove or give a counterexample: If f is continuous on R and differentiable on R∖{0} with limx→0 f′(x) = L, then f is differentiable on R.