Question

4a). Let g be continuous at x = 0. Show that f(x) = xg(x) is differentiable...

4a). Let g be continuous at x = 0. Show that f(x) = xg(x) is differentiable at x = 0 and f'(0) = g(0).

4b). Let f : (a,b) to R and p in (a,b). You may assume that f is differentiable on (a,b) and f ' is continuous at p. Show that f'(p) > 0 then there is delta > 0, such that f is strictly increasing on D(p,delta). Conclude that on D(p,delta) the function f has a differentiable inverse.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let f(x) be a continuous, everywhere differentiable function. What kind information does f'(x) provide regarding f(x)?...
Let f(x) be a continuous, everywhere differentiable function. What kind information does f'(x) provide regarding f(x)? Let f(x) be a continuous, everywhere differentiable function. What kind information does f''(x) provide regarding f(x)? Let f(x) be a continuous, everywhere differentiable function. What kind information does f''(x) provide regarding f'(x)? Let h(x) be a continuous function such that h(a) = m and h'(a) = 0. Is there enough evidence to conclude the point (a, m) must be a maximum or a minimum?...
Let f: R -> R and g: R -> R be differentiable, with g(x) ≠ 0...
Let f: R -> R and g: R -> R be differentiable, with g(x) ≠ 0 for all x. Assume that g(x) f'(x) = f(x) g'(x) for all x. Show that there is a real number c such that f(x) = cg(x) for all x. (Hint: Look at f/g.) Let g: [0, ∞) -> R, with g(x) = x2 for all x ≥ 0. Let L be the line tangent to the graph of g that passes through the point...
Let f, g : [a, b] ---> R continuous such that (f(a) - g(a)) (f(b) -...
Let f, g : [a, b] ---> R continuous such that (f(a) - g(a)) (f(b) - g(b)) < 0. a) Show that sup{|f(x) - g(x)| : x ϵ [a, b]} is strictly positive and achieved (is a maximum).
Let f be continuous on [ 0 , ∞ ) and differentiable on ( 0 ,...
Let f be continuous on [ 0 , ∞ ) and differentiable on ( 0 , ∞ ) . If f ( 0 ) = 0 and | f ′ ( x ) | ≤ | f ( x ) | for all x > 0 , then f ( x ) = 0 for all x ≥ 0 .
Let f: [a,b] to R be continuous and strictly increasing on (a,b). Show that f is...
Let f: [a,b] to R be continuous and strictly increasing on (a,b). Show that f is strictly increasing on [a,b].
Let f: R --> R be a differentiable function such that f' is bounded. Show that...
Let f: R --> R be a differentiable function such that f' is bounded. Show that f is uniformly continuous.
. Let f and g : [0, 1] → R be continuous, and assume f(x) =...
. Let f and g : [0, 1] → R be continuous, and assume f(x) = g(x) for all x < 1. Does this imply that f(1) = g(1)? Provide a proof or a counterexample.
a) Let f : [a, b] −→ R and g : [a, b] −→ R be...
a) Let f : [a, b] −→ R and g : [a, b] −→ R be differentiable. Then f and g differ by a constant if and only if f ' (x) = g ' (x) for all x ∈ [a, b]. b) For c > 0, prove that the following equation does not have two solutions. x3− 3x + c = 0, 0 < x < 1 c) Let f : [a, b] → R be a differentiable function...
Let g from R to R is a differentiable function, g(0)=1, g’(x)>=g(x) for all x>0 and...
Let g from R to R is a differentiable function, g(0)=1, g’(x)>=g(x) for all x>0 and g’(x)=<g(x) for all x<0. Proof that g(x)>=exp(x) for all x belong to R.
Consider the function f : R → R defined by f(x) = ( 5 + sin...
Consider the function f : R → R defined by f(x) = ( 5 + sin x if x < 0, x + cos x + 4 if x ≥ 0. Show that the function f is differentiable for all x ∈ R. Compute the derivative f' . Show that f ' is continuous at x = 0. Show that f ' is not differentiable at x = 0. (In this question you may assume that all polynomial and trigonometric...