Question

A graph G is said to be k-critical if ?(?)=? and the deletion of any vertex...

A graph G is said to be k-critical if ?(?)=? and the deletion of any vertex yields a graph of smaller chromatic number.

(i) Find all 2-critical and 3-critical simple graphs. Be sure to justify your answer.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a. A graph is called k-regular if every vertex has degree k. Explain why any k-regular...
a. A graph is called k-regular if every vertex has degree k. Explain why any k-regular graph with 11 vertices must conain an Euler circuit. (Hint – think of the possible values of k). b. If G is a 6-regular graph, what is the chromatic number of G? Must it be 6? Explain
Q. a graph is called k-planar if every vertex has degree k. (a) Explain why any...
Q. a graph is called k-planar if every vertex has degree k. (a) Explain why any k-regular graph with 11 vertices should contain an Euler’s circuit. (what are the possible values of k). (b) Suppose G is a 6-regular graph. Must the chromatic number of G be at leat 6? Explain.
Let G be a simple graph having at least one edge, and let L(G) be its...
Let G be a simple graph having at least one edge, and let L(G) be its line graph. (a) Show that χ0(G) = χ(L(G)). (b) Assume that the highest vertex degree in G is 3. Using the above, show Vizing’s Theorem for G. You may use any theorem from class involving the chromatic number, but no theorem involving the chromatic index
A K-regular graph G is a graph such that deg(v) = K for all vertices v...
A K-regular graph G is a graph such that deg(v) = K for all vertices v in G. For example, c_9 is a 2-regular graph, because every vertex has degree 2. For some K greater than or equal to 2, neatly draw a simple K-regular graph that has a bridge. If it is impossible, prove why.
a) Let k>1 be the size of a minimum edge cut in G. Show that the...
a) Let k>1 be the size of a minimum edge cut in G. Show that the deletion of k edges from G results in at most 2 components. b) Is the same true for vertex cuts? Justify your answer.
Problem 2. Consider a graph G = (V,E) where |V|=n. 2(a) What is the total number...
Problem 2. Consider a graph G = (V,E) where |V|=n. 2(a) What is the total number of possible paths of length k ≥ 0 in G from a given starting vertex s and ending vertex t? Hint: a path of length k is a sequence of k + 1 vertices without duplicates. 2(b) What is the total number of possible paths of any length in G from a given starting vertex s and ending vertex t? 2(c) What is the...
G is a complete bipartite graph on 7 vertices. G is planar, and it has an...
G is a complete bipartite graph on 7 vertices. G is planar, and it has an Eulerian path. Answer the questions, and explain your answers. 1. How many edges does G have? 2. How many faces does G have? 3. What is the chromatic number of G?
Graph Theory, discrete math question: Let G be a graph with 100 vertices, and chromatic number...
Graph Theory, discrete math question: Let G be a graph with 100 vertices, and chromatic number 99. Prove a lower bound for the clique number of G. Any lower bound will do, but try to make it as large as you can. Please follow this hint my professor gave and show your work, Thank you!! Hint: can you prove that the clique number is at least 1? Now how about 2? Can you prove that the clique number must be...
Given a directed acyclic graph G= (V,E), vertex s∈V, design a dynamic programming algorithm to compute...
Given a directed acyclic graph G= (V,E), vertex s∈V, design a dynamic programming algorithm to compute the number of distinct paths from s to v for any v∈V. 1. Define subproblems 2. Write recursion 3. Give the pseudo-code 4. Analyze the running time.
Suppose that we generate a random graph G = (V, E) on the vertex set V...
Suppose that we generate a random graph G = (V, E) on the vertex set V = {1, 2, . . . , n} in the following way. For each pair of vertices i, j ∈ V with i < j, we flip a fair coin, and we include the edge i−j in E if and only if the coin comes up heads. How many edges should we expect G to contain? How many cycles of length 3 should we...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT