Question

Find the solution of the wave equation on the interval [0, 1] with Dirichlet boundary conditions...

Find the solution of the wave equation on the interval [0, 1] with Dirichlet boundary conditions and initial conditions u0 = 0 and

v0 = { x if 0 <= x <= 1/2, 1 - x if 1/2 <= x <= 1

Homework Answers

Answer #1

Doubt in this then comment below.. i will explain you..

.

please thumbs up for this solution...thanks..

.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Power series Find the particular solution of the differential equation: (x^2+1)y"+xy'-4y=0 given the boundary conditions x=0,...
Power series Find the particular solution of the differential equation: (x^2+1)y"+xy'-4y=0 given the boundary conditions x=0, y=1 and y'=1. Use only the 7th degree term of the solution. Solve for y at x=2. Write your answer in whole number.
Let a, c be positive constants and assume that a/ 2πc is a positive integer. Consider...
Let a, c be positive constants and assume that a/ 2πc is a positive integer. Consider the equation Utt + aut = c^2Uxx , which represents a damped version of the wave equation (telegrapher’s equation). Assuming Dirichlet boundary conditions u(0, t) = u(1, t) = 0, on the infinite strip 0 ≤ x ≤ 1, t ≥ 0, with initial conditions u(x, 0) = f(x), ut(x, 0) = 0, complete the following: (a) Find all separable solutions (of the form...
Find the solution formula for the heat equation ut = c2 uxx on the half-infinite bar...
Find the solution formula for the heat equation ut = c2 uxx on the half-infinite bar (0 ≤ x < ∞) with Dirichlet boundary condition u(0, t) = a, for some constant a, and initial condition u(x, 0) = f(x) using the Fourier sine transform.
Consider the one dimensional heat equation with homogeneous Dirichlet conditions and initial condition: PDE : ut...
Consider the one dimensional heat equation with homogeneous Dirichlet conditions and initial condition: PDE : ut = k uxx, BC : u(0, t) = u(L, t) = 0, IC : u(x, 0) = f(x) a) Suppose k = 0.2, L = 1, and f(x) = 180x(1−x) 2 . Using the first 10 terms in the series, plot the solution surface and enough time snapshots to display the dynamics of the solution. b) What happens to the solution as t →...
(PDE) WRITE down the solutions to the ff initial boundary problem for wave equation in the...
(PDE) WRITE down the solutions to the ff initial boundary problem for wave equation in the form of Fourier series : 1. Utt = Uxx ; u( t,0) = u(t,phi) = 0 ; u(0,x)=1 , Ut( (0,x) = 0 2. Utt = 4Uxx ; u( t,0) = u(t,1) = 0 ; u(0,x)=x , Ut( (0,x) = -x
Write the example of one dimensional wave equation on [0, 4]. (Write out the system of...
Write the example of one dimensional wave equation on [0, 4]. (Write out the system of the PDEs) The boundary condition: At x = 4 is a homogeneous Dirichelet boundary condition At x = 0 is a homogeneous Neumann boundary condition. The initial condition of the displacement at t = 0 is x The initial velocity at t = 0 is 1.
uxx = ut - u (0<x<1, t>0), boundary conditions: u(1,t)=cost, u(0,t)= 0 initial conditions: u(x,0)= x...
uxx = ut - u (0<x<1, t>0), boundary conditions: u(1,t)=cost, u(0,t)= 0 initial conditions: u(x,0)= x i) solve this problem by using the method of separation of variables. (Please, share the solution step by step) ii) graphically present two terms(binomial) solutions for u(x,1).
Use the Fourier sine transform to derive the solution formula for the heat equation ut =...
Use the Fourier sine transform to derive the solution formula for the heat equation ut = c2 uxx on the half-infinite bar (0 ≤ x < ∞) with Dirichlet boundary condition u(0, t) = a, for some constant a, and initial condition u(x, 0) = f(x).
Suppose an infinite string is hit with a hammer, so that the initial conditions are given...
Suppose an infinite string is hit with a hammer, so that the initial conditions are given by u0(x) = 0 and v0(x) = {1 if -1 <= x <= 1 , 0 otherwise. Find the shape of the string for all later times.
Using separation of variables to solve the heat equation, ut = kuxx on the interval 0...
Using separation of variables to solve the heat equation, ut = kuxx on the interval 0 < x < 1 with boundary conditions ux (0, t ) = 0 and ux (1, t ) = 0, yields the general solution, ∞ u(x,t) = A0 + ?Ane−kλnt cos?nπx? (with λn = n2π2) n=1DeterminethecoefficientsAn(n=0,1,2,...)whenu(x,0)=f(x)= 0, 1/2≤x<1 .