Question

uxx = ut - u (0<x<1, t>0), boundary conditions: u(1,t)=cost, u(0,t)= 0 initial conditions: u(x,0)= x...

uxx = ut - u (0<x<1, t>0),

boundary conditions: u(1,t)=cost, u(0,t)= 0

initial conditions: u(x,0)= x

i) solve this problem by using the method of separation of variables. (Please, share the solution step by step)

ii) graphically present two terms(binomial) solutions for u(x,1).

Homework Answers

Answer #1

The given problem is to solve by using separation of variables..the steps and procedure is clearly written in the pics...if you have any doubt ask in the comment section...THANK YOU :-)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solve ut=uxx, 0 < x < 3, given the following initial and boundary conditions: - u(0,t)...
Solve ut=uxx, 0 < x < 3, given the following initial and boundary conditions: - u(0,t) = u(3,t) = 1 - u(x,0) = 0 Please write clearly and explain your reasoning.
Determine the solution of the following initial boundary-value problem Uxx=4Utt 0<x<Pi t>0 U(x,0)=sinx 0<=x<Pi Ut(x,0)=x 0<=x<Pi...
Determine the solution of the following initial boundary-value problem Uxx=4Utt 0<x<Pi t>0 U(x,0)=sinx 0<=x<Pi Ut(x,0)=x 0<=x<Pi U(0,t)=0 t>=0 U(pi,t)=0 t>=0
Solve the heat equation and find the steady state solution : uxx=ut 0<x<1, t>0, u(0,t)=T1, u(1,t)=T2,...
Solve the heat equation and find the steady state solution : uxx=ut 0<x<1, t>0, u(0,t)=T1, u(1,t)=T2, where T1 and T2 are distinct constants, and u(x,0)=0
Solve the wave equation on the whole line (no boundary conditions) with initial conditions: u(x,0) =...
Solve the wave equation on the whole line (no boundary conditions) with initial conditions: u(x,0) = 0, ut (x,0)=xe^(-x^2)
1. Solve fully the heat equation problem: ut = 5uxx u(0, t) = u(1, t) =...
1. Solve fully the heat equation problem: ut = 5uxx u(0, t) = u(1, t) = 0 u(x, 0) = x − x ^3 (Provide all the details of separation of variables as well as the needed Fourier expansions.)
(PDE) WRITE down the solutions to the ff initial boundary problem for wave equation in the...
(PDE) WRITE down the solutions to the ff initial boundary problem for wave equation in the form of Fourier series : 1. Utt = Uxx ; u( t,0) = u(t,phi) = 0 ; u(0,x)=1 , Ut( (0,x) = 0 2. Utt = 4Uxx ; u( t,0) = u(t,1) = 0 ; u(0,x)=x , Ut( (0,x) = -x
Solve the heat equation and find the steady state solution: uxx = ut, 0 < x...
Solve the heat equation and find the steady state solution: uxx = ut, 0 < x < 1, t > 0, u(0,t) = T1, u(1,t) = T2, where T1 and T2 are distinct constants, and u(x,0) = 0
Solve the wave equation Utt - C^2 Uxx = 0 with initial condtions : 1) u(x,0)...
Solve the wave equation Utt - C^2 Uxx = 0 with initial condtions : 1) u(x,0) = log (1+x^2), Ut(x,0) = 4+x 2) U(x,0) = x^3 , Ut(x,0) =sinx (PDE)
Solve the heat equation ut = k uxx, 0 < x < L, t > 0...
Solve the heat equation ut = k uxx, 0 < x < L, t > 0 u(0, t) = u(L, t) = 0, t > 0 u(x, 0) = f(x), 0 < x < L a) f(x) = 6 sin 9πx L b) f(x) = 1 if 0 < x ≤ L/2 2 if L/2 < x < L
Solve the following initial/boundary value problem: ∂u(t,x)/∂t = ∂^2u(t,x)/∂x^2 for t>0, 0<x<π, u(t,0)=u(t,π)=0 for t>0, u(0,x)=sin^2x...
Solve the following initial/boundary value problem: ∂u(t,x)/∂t = ∂^2u(t,x)/∂x^2 for t>0, 0<x<π, u(t,0)=u(t,π)=0 for t>0, u(0,x)=sin^2x for 0≤x≤ π. if you like, you can use/cite the solution of Fourier sine series of sin^2(x) on [0,pi] = 1/4-(1/4)cos(2x) please show all steps and work clearly so I can follow your logic and learn to solve similar ones myself.