Question

Given a function f:R→R and real numbers a and L, we say that the limit of...

  • Given a function f:R→R and real numbers a and L, we say that the limit of f as x approaches a is L if for all ε>0, there exists δ>0 such that for all x, if 0<|x-a|<δ, then |f(x)-L|<ε. Prove that if f(x)=3x+4, then the limit of f as x approaches -1 is 1.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Assumptions: The formal definition of the limit of a function is as follows: Let ƒ :...
Assumptions: The formal definition of the limit of a function is as follows: Let ƒ : D →R with x0 being an accumulation point of D. Then ƒ has a limit L at x0 if for each ∈ > 0 there is a δ > 0 that if 0 < |x – x0| < δ and x ∈ D, then |ƒ(x) – L| < ∈. Let L = 4P + Q. when P = 6 and Q = 24 Define...
Use Definition 4.2.1 to supply a proper proof for the following limit statements. (a) lim as...
Use Definition 4.2.1 to supply a proper proof for the following limit statements. (a) lim as x→2 of (3x + 4) = 10. (d) lim as x→3 of 1/x =1 /3. Definition 4.2.1 (Functional Limit). Let f : A → R, and let c be a limit point of the domain A. We say that limx→c f(x)=L provided that, for all ϵ>0, there exists a δ>0 such that whenever 0 < |x−c| <δ(and x ∈ A) it follows that |f(x)−L|...
Let f : R → R be a bounded differentiable function. Prove that for all ε...
Let f : R → R be a bounded differentiable function. Prove that for all ε > 0 there exists c ∈ R such that |f′(c)| < ε.
hi guys , using this definition for limits in higher dimensions : lim (x,y)→(a,b) f(x, y)...
hi guys , using this definition for limits in higher dimensions : lim (x,y)→(a,b) f(x, y) = L if 1. ∃r > 0 s.th. f(x, y) is defined when 0 < || (x, y) − (a, b) || < r and 2. given ε > 0 we can find δ > 0 s.th. 0 < || (x, y) − (a, b) || < δ =⇒ | f(x, y) − L | < ε how do i show that this is...
Let f : [a,b] → R be a continuous function such that f(x) doesn't equal 0...
Let f : [a,b] → R be a continuous function such that f(x) doesn't equal 0 for every x ∈ [a,b]. 1) Show that either f(x) > 0 for every x ∈ [a,b] or f(x) < 0 for every x ∈ [a,b]. 2) Assume that f(x) > 0 for every x ∈ [a,b] and prove that there exists ε > 0 such that f(x) ≥ ε for all x ∈ [a,b].
Prove that if (xn) is a sequence of real numbers, then lim sup|xn| = 0 as...
Prove that if (xn) is a sequence of real numbers, then lim sup|xn| = 0 as n approaches infinity. if and only if the limit of (xN) exists and xn approaches 0.
Define f: R (all positive real numbers) -> R (all positive real numbers) by f(x)= sqrt(x^3+2)...
Define f: R (all positive real numbers) -> R (all positive real numbers) by f(x)= sqrt(x^3+2) prove that f is bijective
A. Let p and r be real numbers, with p < r. Using the axioms of...
A. Let p and r be real numbers, with p < r. Using the axioms of the real number system, prove there exists a real number q so that p < q < r. B. Let f: R→R be a polynomial function of even degree and let A={f(x)|x ∈R} be the range of f. Define f such that it has at least two terms. 1. Using the properties and definitions of the real number system, and in particular the definition...
Consider the following limit. lim x→4 (x2 + 8) Find the limit L. L = 24...
Consider the following limit. lim x→4 (x2 + 8) Find the limit L. L = 24 (a) Find δ > 0 such that |f(x) − L| < 0.01 whenever 0 < |x − c| < δ. (Round your answer to five decimal places.) δ =   (b) Find δ > 0 such that |f(x) − L| < 0.005 whenever 0 < |x − c| < δ. (Round your answer to five decimal places.) δ =
Let f be a function differentiable on R (all real numbers). Let y1 and y2 be...
Let f be a function differentiable on R (all real numbers). Let y1 and y2 be pair of numbers (y1 < y2) with the property f(y1) = y2 and f(y2) = y1. Show there exists a num where the value of f' is -1. Name all theroms that you use and explain each step.