Question

Assumptions: The formal definition of the limit of a function is as follows: Let ƒ :...

Assumptions:

The formal definition of the limit of a function is as follows: Let ƒ : DR with x0 being an accumulation point of D. Then ƒ has a limit L at x0 if for each ∈ > 0 there is a δ > 0 that if 0 < |xx0| < δ and xD, then |ƒ(x) – L| < ∈.

Let L = 4P + Q. when P = 6 and Q = 24

Define your function to be f(x) = Px + Q where f(x) is a function from the real numbers to the real numbers.

A. Compute a δ that is appropriate to prove your function, f(x), converges to L. Show your work.

1. For ε > 0, prove that   x→4   lim f (x) = L by using the formal definition of a limit of the function in the Assumptions section. Show and justify your work.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In this task, you will write a proof to analyze the limit of a sequence. ASSUMPTIONS...
In this task, you will write a proof to analyze the limit of a sequence. ASSUMPTIONS Definition: A sequence {an} for n = 1 to ∞ converges to a real number A if and only if for each ε > 0 there is a positive integer N such that for all n ≥ N, |an – A| < ε . Let P be 6. and Let Q be 24. Define your sequence to be an = 4 + 1/(Pn +...
In this task, you will write a proof to analyze the limit of a sequence. ASSUMPTIONS...
In this task, you will write a proof to analyze the limit of a sequence. ASSUMPTIONS Definition: A sequence {an} for n = 1 to ∞ converges to a real number A if and only if for each ε > 0 there is a positive integer N such that for all n ≥ N, |an – A| < ε . Let P be 6. and Let Q be 24. Define your sequence to be an = 4 + 1/(Pn +...
Given a function f:R→R and real numbers a and L, we say that the limit of...
Given a function f:R→R and real numbers a and L, we say that the limit of f as x approaches a is L if for all ε>0, there exists δ>0 such that for all x, if 0<|x-a|<δ, then |f(x)-L|<ε. Prove that if f(x)=3x+4, then the limit of f as x approaches -1 is 1.
hi guys , using this definition for limits in higher dimensions : lim (x,y)→(a,b) f(x, y)...
hi guys , using this definition for limits in higher dimensions : lim (x,y)→(a,b) f(x, y) = L if 1. ∃r > 0 s.th. f(x, y) is defined when 0 < || (x, y) − (a, b) || < r and 2. given ε > 0 we can find δ > 0 s.th. 0 < || (x, y) − (a, b) || < δ =⇒ | f(x, y) − L | < ε how do i show that this is...
Use the formal definition of limit (epsilon-delta definition) to prove that lim x--> 3 (x^2 +...
Use the formal definition of limit (epsilon-delta definition) to prove that lim x--> 3 (x^2 + 5x) = 24.
Use Definition 4.2.1 to supply a proper proof for the following limit statements. (a) lim as...
Use Definition 4.2.1 to supply a proper proof for the following limit statements. (a) lim as x→2 of (3x + 4) = 10. (d) lim as x→3 of 1/x =1 /3. Definition 4.2.1 (Functional Limit). Let f : A → R, and let c be a limit point of the domain A. We say that limx→c f(x)=L provided that, for all ϵ>0, there exists a δ>0 such that whenever 0 < |x−c| <δ(and x ∈ A) it follows that |f(x)−L|...
State (precisely) the limit definition for the derivative of an arbitrary function f(x) at the point...
State (precisely) the limit definition for the derivative of an arbitrary function f(x) at the point x0. Use the limit definition to compute the derivative of the following function:     f(x) = 1/x^2
Consider the following limit. lim x→4 (x2 + 8) Find the limit L. L = 24...
Consider the following limit. lim x→4 (x2 + 8) Find the limit L. L = 24 (a) Find δ > 0 such that |f(x) − L| < 0.01 whenever 0 < |x − c| < δ. (Round your answer to five decimal places.) δ =   (b) Find δ > 0 such that |f(x) − L| < 0.005 whenever 0 < |x − c| < δ. (Round your answer to five decimal places.) δ =
Use ε − δ definition to prove that the function f (x) = 2x/3x^2 - 2...
Use ε − δ definition to prove that the function f (x) = 2x/3x^2 - 2 is continuous at the point p = 1.
Consider the following limit. lim (x^2 + 4) (x--> 5) 1. Find the limit L. 2....
Consider the following limit. lim (x^2 + 4) (x--> 5) 1. Find the limit L. 2. Find the largest δ such that |f(x) − L| < 0.01 whenever 0 < |x − 5| < δ. (Assume 4 < x < 6 and δ > 0. Round your answer to four decimal places.) I am honestly so lost... if you could please show work I would greatly appreciate it!!
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT