Question

Prove that an orthogonal projection is a positive operator.

Prove that an orthogonal projection is a positive operator.

Homework Answers

Answer #1

​​​​​​since both the conditions are satisfied the orthogonal projection is a positive operator.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that the orthogonal projection on the span of vectors that are not orthogonal can be...
Prove that the orthogonal projection on the span of vectors that are not orthogonal can be reduced to solving normal equations. Please give an example whatever you like.
Suppose V is a finite dimensional inner product space. Prove that every orthogonal operator on V...
Suppose V is a finite dimensional inner product space. Prove that every orthogonal operator on V , i.e. <T(u), T(v)> , ∀u,v ∈ V , is an isomorphism.
Find the orthogonal projection of u onto the subspace of R4 spanned by the vectors v1,...
Find the orthogonal projection of u onto the subspace of R4 spanned by the vectors v1, v2 and v3. u = (3, 4, 2, 4) ; v1 = (3, 2, 3, 0), v2 = (-8, 3, 6, 3), v3 = (6, 3, -8, 3) Let (x, y, z, w) denote the orthogonal projection of u onto the given subspace. Then, the components of the target orthogonal projection are
Please describe in one or two sentences what an orthogonal projection is. Also, do the same...
Please describe in one or two sentences what an orthogonal projection is. Also, do the same for residual projection. Thank you!
Please first prove A to be a Hermitian operator, and after please prove <A^2> to be...
Please first prove A to be a Hermitian operator, and after please prove <A^2> to be positive.
U= [2,-5,-1] V=[3,2,-3] Find the orthogonal projection of u onto v. Then write u as the...
U= [2,-5,-1] V=[3,2,-3] Find the orthogonal projection of u onto v. Then write u as the sum of two orthogonal vectors, one in span{U} and one orthogonal to U
1. Find the orthogonal projection of the matrix [[3,2][4,5]] onto the space of diagonal 2x2 matrices...
1. Find the orthogonal projection of the matrix [[3,2][4,5]] onto the space of diagonal 2x2 matrices of the form lambda?I.   [[4.5,0][0,4.5]]  [[5.5,0][0,5.5]]  [[4,0][0,4]]  [[3.5,0][0,3.5]]  [[5,0][0,5]]  [[1.5,0][0,1.5]] 2. Find the orthogonal projection of the matrix [[2,1][2,6]] onto the space of symmetric 2x2 matrices of trace 0.   [[-1,3][3,1]]  [[1.5,1][1,-1.5]]  [[0,4][4,0]]  [[3,3.5][3.5,-3]]  [[0,1.5][1.5,0]]  [[-2,1.5][1.5,2]]  [[0.5,4.5][4.5,-0.5]]  [[-1,6][6,1]]  [[0,3.5][3.5,0]]  [[-1.5,3.5][3.5,1.5]] 3. Find the orthogonal projection of the matrix [[1,5][1,2]] onto the space of anti-symmetric 2x2 matrices.   [[0,-1] [1,0]]  [[0,2] [-2,0]]  [[0,-1.5] [1.5,0]]  [[0,2.5] [-2.5,0]]  [[0,0] [0,0]]  [[0,-0.5] [0.5,0]]  [[0,1] [-1,0]] [[0,1.5] [-1.5,0]]  [[0,-2.5] [2.5,0]]  [[0,0.5] [-0.5,0]] 4. Let p be the orthogonal projection of u=[40,-9,91]T onto the...
Find the orthogonal projection of v =[12 -3 9 -16] onto the subspace W spanned by...
Find the orthogonal projection of v =[12 -3 9 -16] onto the subspace W spanned by {[-2 4 1 -1],[-4 0 -1 -4],[-4 1 -3 4]}
Find the orthogonal projection of v⃗ =⎢4,−11,−36,9⎤ onto the subspace W spanned by ⎢0,0,−5,−2| , |−4,2,5,−5⎢...
Find the orthogonal projection of v⃗ =⎢4,−11,−36,9⎤ onto the subspace W spanned by ⎢0,0,−5,−2| , |−4,2,5,−5⎢ , ⎢−5,−5,0,5|
Find the 3 * 3 matrix A corresponding to orthogonal projection onto the solution space of...
Find the 3 * 3 matrix A corresponding to orthogonal projection onto the solution space of the system below. 2x + 3y + z = 0; x - 3y - z = 0: Your solution should contain the following information: (a) The eigenvector(s) of A that is (are) contained in the solution space; (b) The eigenvector(s) of A that is (are) perpendicular to the solution space; (c) The corresponding eigenvalues for those eigenvectors.