Question

Prove that an orthogonal projection is a positive operator.

Answer #1

since both the conditions are satisfied the orthogonal projection is a positive operator.

Prove that the orthogonal projection on the span of vectors
that are not orthogonal can be reduced to solving normal
equations. Please give an example whatever you like.

Suppose V is a ﬁnite dimensional inner product space. Prove that
every orthogonal operator on V , i.e. <T(u), T(v)> , ∀u,v ∈ V
, is an isomorphism.

Find the orthogonal projection of u onto the
subspace of R4 spanned by the vectors
v1, v2 and
v3.
u = (3, 4, 2, 4) ;
v1 = (3, 2, 3, 0),
v2 = (-8, 3, 6, 3),
v3 = (6, 3, -8, 3)
Let (x, y, z, w) denote the
orthogonal projection of u onto the given
subspace. Then, the components of the target orthogonal projection
are

Please describe in one or two sentences what an orthogonal
projection is.
Also, do the same for residual projection.
Thank you!

Please first prove A to be a Hermitian operator, and after
please prove <A^2> to be positive.

U= [2,-5,-1] V=[3,2,-3] Find the orthogonal projection of u onto
v. Then write u as the sum of two orthogonal vectors, one in
span{U} and one orthogonal to U

1. Find the orthogonal projection of the matrix
[[3,2][4,5]] onto the space of diagonal 2x2 matrices of the form
lambda?I.
[[4.5,0][0,4.5]] [[5.5,0][0,5.5]] [[4,0][0,4]] [[3.5,0][0,3.5]] [[5,0][0,5]] [[1.5,0][0,1.5]]
2. Find the orthogonal projection of the matrix
[[2,1][2,6]] onto the space of symmetric 2x2 matrices of trace
0.
[[-1,3][3,1]] [[1.5,1][1,-1.5]] [[0,4][4,0]] [[3,3.5][3.5,-3]] [[0,1.5][1.5,0]] [[-2,1.5][1.5,2]] [[0.5,4.5][4.5,-0.5]] [[-1,6][6,1]] [[0,3.5][3.5,0]] [[-1.5,3.5][3.5,1.5]]
3. Find the orthogonal projection of the matrix
[[1,5][1,2]] onto the space of anti-symmetric 2x2
matrices.
[[0,-1] [1,0]] [[0,2] [-2,0]] [[0,-1.5]
[1.5,0]] [[0,2.5] [-2.5,0]] [[0,0]
[0,0]] [[0,-0.5] [0.5,0]] [[0,1] [-1,0]]
[[0,1.5] [-1.5,0]] [[0,-2.5]
[2.5,0]] [[0,0.5] [-0.5,0]]
4. Let p be the orthogonal projection of
u=[40,-9,91]T onto the...

Find the orthogonal projection of v =[12 -3 9 -16] onto the
subspace W spanned by {[-2 4 1 -1],[-4 0 -1 -4],[-4 1 -3 4]}

Find the orthogonal projection of v⃗ =⎢4,−11,−36,9⎤ onto the
subspace W spanned by ⎢0,0,−5,−2| , |−4,2,5,−5⎢ , ⎢−5,−5,0,5|

Find the 3 * 3 matrix A corresponding to orthogonal projection
onto the solution
space of the system below.
2x + 3y + z = 0;
x - 3y - z = 0:
Your solution should contain the following information: (a) The
eigenvector(s) of
A that is (are) contained in the solution space; (b) The
eigenvector(s) of A that
is (are) perpendicular to the solution space; (c) The corresponding
eigenvalues for
those eigenvectors.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 26 minutes ago

asked 51 minutes ago

asked 53 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago