Question

U= [2,-5,-1] V=[3,2,-3] Find the orthogonal projection of u onto v. Then write u as the...

U= [2,-5,-1] V=[3,2,-3] Find the orthogonal projection of u onto v. Then write u as the sum of two orthogonal vectors, one in span{U} and one orthogonal to U

Homework Answers

Answer #1

There is a mistake. The question should read “Find the orthogonal projection of v onto u. Then write v as the sum of two orthogonal vectors, one in span{u} and one orthogonal to u.

We have projv (u) = [(v.u)/(u.u)]u = [(6-10+3)/(4+25+1)]u = -(1/30)u = -(1/30) [2,-5,-1] = [-1/15,1/6,1/30]. This vector, being a scalar multiple of u is in span{u}.

Let x = [-1/15,1/6,1/30]. Then v-x = [3,2,-3]- [-1/15,1/6,1/30]= [ 46/15,11/6,-91/30] = y (say).

Then v = x+y, where x = [-1/15,1/6,1/30] is in span{u} and y = [ 46/15,11/6,-91/30] is orthogonal to u.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the orthogonal projection of u onto the subspace of R4 spanned by the vectors v1,...
Find the orthogonal projection of u onto the subspace of R4 spanned by the vectors v1, v2 and v3. u = (3, 4, 2, 4) ; v1 = (3, 2, 3, 0), v2 = (-8, 3, 6, 3), v3 = (6, 3, -8, 3) Let (x, y, z, w) denote the orthogonal projection of u onto the given subspace. Then, the components of the target orthogonal projection are
1. Find the orthogonal projection of the matrix [[3,2][4,5]] onto the space of diagonal 2x2 matrices...
1. Find the orthogonal projection of the matrix [[3,2][4,5]] onto the space of diagonal 2x2 matrices of the form lambda?I.   [[4.5,0][0,4.5]]  [[5.5,0][0,5.5]]  [[4,0][0,4]]  [[3.5,0][0,3.5]]  [[5,0][0,5]]  [[1.5,0][0,1.5]] 2. Find the orthogonal projection of the matrix [[2,1][2,6]] onto the space of symmetric 2x2 matrices of trace 0.   [[-1,3][3,1]]  [[1.5,1][1,-1.5]]  [[0,4][4,0]]  [[3,3.5][3.5,-3]]  [[0,1.5][1.5,0]]  [[-2,1.5][1.5,2]]  [[0.5,4.5][4.5,-0.5]]  [[-1,6][6,1]]  [[0,3.5][3.5,0]]  [[-1.5,3.5][3.5,1.5]] 3. Find the orthogonal projection of the matrix [[1,5][1,2]] onto the space of anti-symmetric 2x2 matrices.   [[0,-1] [1,0]]  [[0,2] [-2,0]]  [[0,-1.5] [1.5,0]]  [[0,2.5] [-2.5,0]]  [[0,0] [0,0]]  [[0,-0.5] [0.5,0]]  [[0,1] [-1,0]] [[0,1.5] [-1.5,0]]  [[0,-2.5] [2.5,0]]  [[0,0.5] [-0.5,0]] 4. Let p be the orthogonal projection of u=[40,-9,91]T onto the...
2. a. Given u = (9,7) and v = (2,3), find the projection of u onto...
2. a. Given u = (9,7) and v = (2,3), find the projection of u onto v. (ordered pair) b. Find the area of the parllelogram that has the given vectors u = j and v = 2j + k as adjacent sides.
Consider the following. u = −6, −4, −7 ,    v = 3, 5, 2 (a) Find the...
Consider the following. u = −6, −4, −7 ,    v = 3, 5, 2 (a) Find the projection of u onto v. (b) Find the vector component of u orthogonal to v.
Find the orthogonal projection of v=[−2,10,−16,−19] onto the subspace W spanned by [-4,0,-2,1],[-4,-2,5,1],[3,-1,-3,4]
Find the orthogonal projection of v=[−2,10,−16,−19] onto the subspace W spanned by [-4,0,-2,1],[-4,-2,5,1],[3,-1,-3,4]
Given vector ? = 2? + 3?, ? = −5? + ? + ?. Find the...
Given vector ? = 2? + 3?, ? = −5? + ? + ?. Find the followings. a) The projection of u onto v b) A vector that is orthogonal to both u and v
Let u = ⟨1,3⟩ and v = ⟨4,1⟩. (a) Find an exact expression and a numerical...
Let u = ⟨1,3⟩ and v = ⟨4,1⟩. (a) Find an exact expression and a numerical approximation for the angle between u and v. (b) Find both the projection of u onto v and the vector component of u orthogonal to v. (c) Sketch u, v, and the two vectors you found in part (b).
Find the projection of u = −i + j + k onto v = 2i +...
Find the projection of u = −i + j + k onto v = 2i + j − 7k.
For parts ( a ) − ( c ) , let u = 〈 2 ,...
For parts ( a ) − ( c ) , let u = 〈 2 , 4 , − 1 〉 and v = 〈 4 , − 2 , 1 〉 . ( a ) Find a unit vector which is orthogonal to both u and v . ( b ) Find the vector projection of u onto v . ( c ) Find the scalar projection of u onto v . For parts ( a ) − (...
True or False If A is the matrix of a projection onto a line L in...
True or False If A is the matrix of a projection onto a line L in R 2 and the vector x in R 2 is not the zero vector, then the vector x − Ax is perpendicular to the vector x. If vectors u, v, x and y are vectors in R 7 such that u = 2v + 0x − 3y, then a basis for span(u, v, x, y) is {u, v, y}.