Question

. For any integer n ≥ 2, let A(n) denote the number of ways to fully...

. For any integer n ≥ 2, let A(n) denote the number of ways to fully parenthesize a sum of n terms such as a1 + · · · + an. Examples:

• A(2) = 1, since the only way to fully parenthesize a1 + a2 is (a1 + a2).

• A(3) = 2, since the only ways to fully parenthesize a1 + a2 + a3 are ((a1 + a2) + a3) and
(a1 + (a2 + a3)).

• A(4) = 5, since a1 + a2 + a3 + a4 can be parenthesized as ((a1 + a2) + (a3 +
a4)), (((a1 + a2) + a3) + a4), (a1 + (a2 + (a3 + a4))), ((a1 + (a2 + a3)) + a4), and (a1 +
((a2 + a3) + a4)).

Prove using complete induction that A(n) <= (n 1)n−1 for all integers

n >= 2. Your proof does not need to be formal, but it should have a clear structure and be easy to understand.

Homework Answers

Answer #1

There is an error in the question in the expression A(n)

I have provided the correct expression and solved it by induction

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let n be an integer, with n ≥ 2. Prove by contradiction that if n is...
Let n be an integer, with n ≥ 2. Prove by contradiction that if n is not a prime number, then n is divisible by an integer x with 1 < x ≤√n. [Note: An integer m is divisible by another integer n if there exists a third integer k such that m = nk. This is just a formal way of saying that m is divisible by n if m n is an integer.]
Let a0 = 1, a1 = 2, a2 = 4, and an = an-1 + an-3...
Let a0 = 1, a1 = 2, a2 = 4, and an = an-1 + an-3 for n>= 3. Let P(n) denote an an <= 2^n. Prove that P(n) for n>= 0 using strong induction: (a) (1 point) Show that P(0), P(1), and P(2) are true, which completes the base case. (b) Inductive Step: i. (1 point) What is your inductive hypothesis? ii. (1 point) What are you trying to prove? iii. (2 points) Complete the proof:
Let a0 = 1, a1 = 2, a2 = 4, and an = an-1 + an-3...
Let a0 = 1, a1 = 2, a2 = 4, and an = an-1 + an-3 for n>= 3. Let P(n) denote an an <= 2^n. Prove that P(n) for n>= 0 using strong induction: (a) (1 point) Show that P(0), P(1), and P(2) are true, which completes the base case. (b) Inductive Step: i. (1 point) What is your inductive hypothesis? ii. (1 point) What are you trying to prove? iii. (2 points) Complete the proof:
Prove that there is no positive integer n so that 25 < n^2 < 36. Prove...
Prove that there is no positive integer n so that 25 < n^2 < 36. Prove this by directly proving the negation.Your proof must only use integers, inequalities and elementary logic. You may use that inequalities are preserved by adding a number on both sides,or by multiplying both sides by a positive number. You cannot use the square root function. Do not write a proof by contradiction.
How many ways are there to represent a positive integer n as a sum of (a)...
How many ways are there to represent a positive integer n as a sum of (a) k non-negative integers? (b) k positive integers? Note: the order of summation matters. For example, take n = 3, k = 2. Then the possible sums in (a) are 3+0, 2+1, 1+2, 0+3
Let a1, a2, ..., an be distinct n (≥ 2) integers. Consider the polynomial f(x) =...
Let a1, a2, ..., an be distinct n (≥ 2) integers. Consider the polynomial f(x) = (x−a1)(x−a2)···(x−an)−1 in Q[x] (1) Prove that if then f(x) = g(x)h(x) for some g(x), h(x) ∈ Z[x], g(ai) + h(ai) = 0 for all i = 1, 2, ..., n (2) Prove that f(x) is irreducible over Q
1. Prove that an integer a is divisible by 5 if and only if a2 is...
1. Prove that an integer a is divisible by 5 if and only if a2 is divisible by 5. 2. Deduce that 98765432 is not a perfect square. Hint: You can use any theorem/proposition or whatever was proved in class. 3. Prove that for all integers n,a,b and c, if n | (a−b) and n | (b−c) then n | (a−c). 4. Prove that for any two consecutive integers, n and n + 1 we have that gcd(n,n + 1)...
Let n ≥ 1 be an integer. Use the Pigeonhole Principle to prove that in any...
Let n ≥ 1 be an integer. Use the Pigeonhole Principle to prove that in any set of n + 1 integers from {1, 2, . . . , 2n}, there are two elements that are consecutive (i.e., differ by one).
Let n be a positive integer, and let Hn denote the graph whose vertex set is...
Let n be a positive integer, and let Hn denote the graph whose vertex set is the set of all n-tuples with coordinates in {0, 1}, such that vertices u and v are adjacent if and only if they differ in one position. For example, if n = 3, then (0, 0, 1) and (0, 1, 1) are adjacent, but (0, 0, 0) and (0, 1, 1) are not. Answer the following with brief justification (formal proofs not necessary): a....
Let A = (A1, A2, A3,.....Ai) be defined as a sequence containing positive and negative integer...
Let A = (A1, A2, A3,.....Ai) be defined as a sequence containing positive and negative integer numbers. A substring is defined as (An, An+1,.....Am) where 1 <= n < m <= i. Now, the weight of the substring is the sum of all its elements. Showing your algorithms and proper working: 1) Does there exist a substring with no weight or zero weight? 2) Please list the substring which contains the maximum weight found in the sequence.