Question

Let a1, a2, ..., an be distinct n (≥ 2) integers. Consider the polynomial f(x) =...

Let a1, a2, ..., an be distinct n (≥ 2) integers. Consider the polynomial
f(x) = (x−a1)(x−a2)···(x−an)−1 in Q[x]

(1) Prove that if then f(x) = g(x)h(x)
for some g(x), h(x) ∈ Z[x],
g(ai) + h(ai) = 0 for all i = 1, 2, ..., n

(2) Prove that f(x) is irreducible over Q

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(8 marks) Let S = {(a1, a2, . . . , an)| n ≥ 1, ai...
Let S = {(a1, a2, . . . , an)| n ≥ 1, ai ∈ Z ≥0 for i = 1, 2, . . . , n, an 6= 0}. So S is the set of all finite ordered n-tuples of nonnegative integers where the last coordinate is not 0. Find a bijection from S to Z +.
10. Let P(k) be the following statement: ”Let a1, a2, . . . , ak be...
10. Let P(k) be the following statement: ”Let a1, a2, . . . , ak be integers and p be a prime. If p|(a1 · a2 · a3 · · · ak), then p|ai for some i with 1 ≤ i ≤ k.” Prove that P(k) holds for all positive integers k
Let S = {(a1,a2,...,an)|n ≥ 1,ai ∈ Z≥0 for i = 1,2,...,n,an ̸= 0}. So S...
Let S = {(a1,a2,...,an)|n ≥ 1,ai ∈ Z≥0 for i = 1,2,...,n,an ̸= 0}. So S is the set of all finite ordered n-tuples of nonnegative integers where the last coordinate is not 0. Find a bijection from S to Z+.
Consider the ring R = Z ∞ = {(a1, a2, a3, · · ·) : ai...
Consider the ring R = Z ∞ = {(a1, a2, a3, · · ·) : ai ∈ Z for all i}. It turns out that R forms a ring under the operations (a1, a2, a3, · · ·) + (b1, b2, b3, · · ·) = (a1 + b1, a2 + b2, a3 + b3, · · ·), (a1, a2, a3, · · ·) · (b1, b2, b3, · · ·) = (a1 · b1, a2 · b2, a3 ·...
Let f ∈ Z[x] be a nonconstant polynomial with the property that all the roots (in...
Let f ∈ Z[x] be a nonconstant polynomial with the property that all the roots (in comlex plane) for the equation f(x) = 0 are distinct. Prove that there exist infinitely many positive integers n such that f(n) is not a perfect square.
Let f ∈ Z[x] be a nonconstant polynomial with the property that all the roots (in...
Let f ∈ Z[x] be a nonconstant polynomial with the property that all the roots (in comlex plane) for the equation f(x) = 0 are distinct. Prove that there exist infinitely many positive integers n such that f(n) is not a perfect square. Could you explain it in number theory instead of some deep math like sigel theorem
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It...
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It turns out that R forms a ring under the operations: (a1,a2,a3,···)+(b1,b2,b3,···)=(a1 +b1,a2 +b2,a3 +b3,···), (a1,a2,a3,···)·(b1,b2,b3,···)=(a1 ·b1,a2 ·b2,a3 ·b3,···) Let I = {(a1,a2,a3,···) ∈ Z∞ : all but finitely many ai are 0}. You may use without proof the fact that I forms an ideal of R. a) Is I principal in R? Prove your claim. b) Is I prime in R? Prove your claim....
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It...
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It turns out that R forms a ring under the operations: (a1,a2,a3,···)+(b1,b2,b3,···)=(a1 +b1,a2 +b2,a3 +b3,···), (a1,a2,a3,···)·(b1,b2,b3,···)=(a1 ·b1,a2 ·b2,a3 ·b3,···) Let I = {(a1,a2,a3,···) ∈ Z∞ : all but finitely many ai are 0}. You may use without proof the fact that I forms an ideal of R. a) Is I principal in R? Prove your claim. b) Is I prime in R? Prove your claim....
1.13. Let a1, a2, . . . , ak be integers with gcd(a1, a2, . ....
1.13. Let a1, a2, . . . , ak be integers with gcd(a1, a2, . . . , ak) = 1, i.e., the largest positive integer dividing all of a1, . . . , ak is 1. Prove that the equation a1u1 + a2u2 + · · · + akuk = 1 has a solution in integers u1, u2, . . . , uk. (Hint. Repeatedly apply the extended Euclidean algorithm, Theorem 1.11. You may find it easier to prove...
Suppose V is a vector space over F, dim V = n, let T be a...
Suppose V is a vector space over F, dim V = n, let T be a linear transformation on V. 1. If T has an irreducible characterisctic polynomial over F, prove that {0} and V are the only T-invariant subspaces of V. 2. If the characteristic polynomial of T = g(t) h(t) for some polynomials g(t) and h(t) of degree < n , prove that V has a T-invariant subspace W such that 0 < dim W < n
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT