Question

Prove: Why must every upper triangular matrix with no zero entries on the main diagonal be...

Prove:

Why must every upper triangular matrix with no zero entries on the main diagonal be nonsingular?

(Linear Algebra)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A triangular matrix is called unit triangular if it is square and every main diagonal element...
A triangular matrix is called unit triangular if it is square and every main diagonal element is a 1. (a) If A can be carried by the gaussian algorithm to row-echelon form using no row interchanges, show that A = LU where L is unit lower triangular and U is upper triangular. (b) Show that the factorization in (a) is unique.
Show that if A is an (n × n) upper triangular matrix or lower triangular matrix,...
Show that if A is an (n × n) upper triangular matrix or lower triangular matrix, its eigenvalues are the entries on its main diagonal. (You may limit yourself to the (3 × 3) case.)
Linear Algebra: Show that the set of all 2 x 2 diagonal matrices is a subspace...
Linear Algebra: Show that the set of all 2 x 2 diagonal matrices is a subspace of M 2x2. I know that a diagonal matrix is a square of n x n matrix whose nondiagonal entries are zero, such as the n x n identity matrix. But could you explain every step of how to prove that this diagonal matrix is a subspace of M 2x2. Thanks.
Prove that if an m x m matrix A is upper-triangular, then A-1 is also upper-triangular....
Prove that if an m x m matrix A is upper-triangular, then A-1 is also upper-triangular. Hint: Obtain Axj=ej where xj is the jth column of A-1 and ej is the jth column of I. Then use back substitution to argue that xij = 0 for i > j.
Prove that if A is a nonsingular nxn matrix, then so is cA for every nonzero...
Prove that if A is a nonsingular nxn matrix, then so is cA for every nonzero real number c.
How can I think about matrix entries in a general sense? I a looking for a...
How can I think about matrix entries in a general sense? I a looking for a much deeper analysis than “systems of equations.” For instance, I know that when it is a rotation matrix, I know that the column vectors in the matrix, R, will be where the basis vectors land, and hence it will rotate any given vector accordingly. (is this correct in a general sense, as far as rotation matrices go?) However, for a general linear transformation, I...
Prove that for a square n ×n matrix A, Ax = b (1) has one and...
Prove that for a square n ×n matrix A, Ax = b (1) has one and only one solution if and only if A is invertible; i.e., that there exists a matrix n ×n matrix B such that AB = I = B A. NOTE 01: The statement or theorem is of the form P iff Q, where P is the statement “Equation (1) has a unique solution” and Q is the statement “The matrix A is invertible”. This means...
The trace of a square n×nn×n matrix A=(aij)A=(aij) is the sum a11+a22+⋯+anna11+a22+⋯+ann of the entries on...
The trace of a square n×nn×n matrix A=(aij)A=(aij) is the sum a11+a22+⋯+anna11+a22+⋯+ann of the entries on its main diagonal. Let VV be the vector space of all 2×22×2 matrices with real entries. Let HH be the set of all 2×22×2 matrices with real entries that have trace 11. Is HH a subspace of the vector space VV? Does HH contain the zero vector of VV? choose H contains the zero vector of V H does not contain the zero vector...
Answer all of the questions true or false: 1. a) If one row in an echelon...
Answer all of the questions true or false: 1. a) If one row in an echelon form for an augmented matrix is [0 0 5 0 0] b) A vector b is a linear combination of the columns of a matrix A if and only if the equation Ax=b has at least one solution. c) The solution set of b is the set of all vectors of the form u = + p + vh where vh is any solution...