Question

Linear Algebra: Show that the set of all 2 x 2 diagonal matrices is a subspace...

Linear Algebra: Show that the set of all 2 x 2 diagonal matrices is a subspace of M 2x2.

I know that a diagonal matrix is a square of n x n matrix whose nondiagonal entries are zero, such as the n x n identity matrix.

But could you explain every step of how to prove that this diagonal matrix is a subspace of M 2x2.

Thanks.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine if the given set V is a subspace of the vector space W, where a)...
Determine if the given set V is a subspace of the vector space W, where a) V={polynomials of degree at most n with p(0)=0} and W= {polynomials of degree at most n} b) V={all diagonal n x n matrices with real entries} and W=all n x n matrices with real entries *Can you please show each step and little bit of an explanation on how you got the answer, struggling to learn this concept?*
Linear Algebra question:Suppose A and B are invertible matrices,with A being m*m and B n*n.For any...
Linear Algebra question:Suppose A and B are invertible matrices,with A being m*m and B n*n.For any m*n matrix C and any n*m matrix D,show that: a)(A+CBD)-1-A-1C(B-1+ DA-1C)-1DA-1 b) If A,B and A+B are all m*m invertible matrices,then deduce from a) above that (A+B)-1=A-1-A-1(B-1+A-1)-1A-1
The stochastic group Σ(2, ℝ) consists of all those matrices in GL(2, ℝ) whose column sums...
The stochastic group Σ(2, ℝ) consists of all those matrices in GL(2, ℝ) whose column sums are 1; that is, Σ(2, ℝ) consists of all the nonsingular matrices [a c] [b d] with a + b = 1 = c + d Prove that the product of two stochastic matrices is again stochastic, and that the inverse of a stochastic matrix is stochastic. [abstract algebra] NOTE: the [a c] and [b d] is supposed to be a 2x2 matrix with...
Show that the set Vof all 3 x 3 matrices with distinct entries also combination of...
Show that the set Vof all 3 x 3 matrices with distinct entries also combination of positive and negative numbers is a vector space if vector addition is defined to be matrix addition and vector scalar multiplication is defined to be matrix scalar multiplication
n×n-matrix M is symmetric if M = M^t. Matrix M is anti-symmetric if M^t = -M....
n×n-matrix M is symmetric if M = M^t. Matrix M is anti-symmetric if M^t = -M. 1. Show that the diagonal of an anti-symmetric matrix are zero 2. suppose that A,B are symmetric n × n-matrices. Prove that AB is symmetric if AB = BA. 3. Let A be any n×n-matrix. Prove that A+A^t is symmetric and A - A^t antisymmetric. 4. Prove that every n × n-matrix can be written as the sum of a symmetric and anti-symmetric matrix.
Let X be a set and A a σ-algebra of subsets of X. (a) A function...
Let X be a set and A a σ-algebra of subsets of X. (a) A function f : X → R is measurable if the set {x ∈ X : f(x) > λ} belongs to A for every real number λ. Show that this holds if and only if the set {x ∈ X : f(x) ≥ λ} belongs to A for every λ ∈ R. (b) Let f : X → R be a function. (i) Show that if...
1. Find the orthogonal projection of the matrix [[3,2][4,5]] onto the space of diagonal 2x2 matrices...
1. Find the orthogonal projection of the matrix [[3,2][4,5]] onto the space of diagonal 2x2 matrices of the form lambda?I.   [[4.5,0][0,4.5]]  [[5.5,0][0,5.5]]  [[4,0][0,4]]  [[3.5,0][0,3.5]]  [[5,0][0,5]]  [[1.5,0][0,1.5]] 2. Find the orthogonal projection of the matrix [[2,1][2,6]] onto the space of symmetric 2x2 matrices of trace 0.   [[-1,3][3,1]]  [[1.5,1][1,-1.5]]  [[0,4][4,0]]  [[3,3.5][3.5,-3]]  [[0,1.5][1.5,0]]  [[-2,1.5][1.5,2]]  [[0.5,4.5][4.5,-0.5]]  [[-1,6][6,1]]  [[0,3.5][3.5,0]]  [[-1.5,3.5][3.5,1.5]] 3. Find the orthogonal projection of the matrix [[1,5][1,2]] onto the space of anti-symmetric 2x2 matrices.   [[0,-1] [1,0]]  [[0,2] [-2,0]]  [[0,-1.5] [1.5,0]]  [[0,2.5] [-2.5,0]]  [[0,0] [0,0]]  [[0,-0.5] [0.5,0]]  [[0,1] [-1,0]] [[0,1.5] [-1.5,0]]  [[0,-2.5] [2.5,0]]  [[0,0.5] [-0.5,0]] 4. Let p be the orthogonal projection of u=[40,-9,91]T onto the...
Show that the set GLm,n(R) of all mxn matrices with the usual matrix addition and scalar...
Show that the set GLm,n(R) of all mxn matrices with the usual matrix addition and scalar multiplication is a finite dimensional vector space with dim GLm,n(R) = mn. Show that if V and W be finite dimensional vector spaces with dim V = m and dim W = n, B a basis for V and C a basis for W then hom(V,W)-----MatB--->C(-)--------> GLm,n(R) is a bijective linear transformation. Hence or otherwise, obtain dim hom(V,W). Thank you!
Hi. I have two questions about the linear algebra. 1. Prove that a linear transform always...
Hi. I have two questions about the linear algebra. 1. Prove that a linear transform always maps 0 to 0. 2. Suppose that S = {x, y, z} is a linearly dependent set. Prove that every vector v in the span of the set S can be expressed as a linear combination in more than one way. Will thumb up for both answers. Thank you so much!
The trace of a square n×nn×n matrix A=(aij)A=(aij) is the sum a11+a22+⋯+anna11+a22+⋯+ann of the entries on...
The trace of a square n×nn×n matrix A=(aij)A=(aij) is the sum a11+a22+⋯+anna11+a22+⋯+ann of the entries on its main diagonal. Let VV be the vector space of all 2×22×2 matrices with real entries. Let HH be the set of all 2×22×2 matrices with real entries that have trace 11. Is HH a subspace of the vector space VV? Does HH contain the zero vector of VV? choose H contains the zero vector of V H does not contain the zero vector...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT