Question

Prove that if an m x m matrix A is upper-triangular, then A-1 is also upper-triangular....

Prove that if an m x m matrix A is upper-triangular, then A-1 is also upper-triangular.

Hint: Obtain Axj=ej where xj is the jth column of A-1 and ej is the jth column of I. Then use back substitution to argue that xij = 0 for i > j.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove that any m ×n matrix A can be written in the form A = QR,...
Prove that any m ×n matrix A can be written in the form A = QR, where Q is an m × m orthogonal matrix and R is an m × n upper right triangular matrix.
1. (a) Construct the matrix Upper A equals left bracket Upper A Subscript ij right bracketA=Aij...
1. (a) Construct the matrix Upper A equals left bracket Upper A Subscript ij right bracketA=Aij if A is 2*3 and Upper A Subscript ij Baseline equals negative i plus 4 jAij=−i+4j. ​(b) Construct the 2*4 matrix Upper C equals left bracket left parenthesis 3 i plus j right parenthesis squared right bracketC=(3i+j)2. 2. Solve the following matrix equation. left bracket Start 2 By 2 Matrix 1st Row 1st Column 3 x 2nd Column 4 y minus 5 2nd Row...
Finish the following M-file. Run your function on the same matrix A as given in the...
Finish the following M-file. Run your function on the same matrix A as given in the lab. % LU4 - The function in this M-file computes an LU factorization % of a 4 x 4 matrix under the assumption that elimination can be % performed without row exchanges. % Input: 4 x 4 matrix A; % Output: lower triangular matrix L and upper triangular matrix U. function [L,U] = LU4(A) L = eye(4); U = A; for j= ... for...
Let M be an n x n matrix with each entry equal to either 0 or...
Let M be an n x n matrix with each entry equal to either 0 or 1. Let mij denote the entry in row i and column j. A diagonal entry is one of the form mii for some i. Swapping rows i and j of the matrix M denotes the following action: we swap the values mik and mjk for k = 1,2, ... , n. Swapping two columns is defined analogously. We say that M is rearrangeable if...
Let P be a 2 x 2 stochastic matrix. Prove that there exists a 2 x...
Let P be a 2 x 2 stochastic matrix. Prove that there exists a 2 x 1 state matrix X with nonnegative entries such that P X = X. Hint: First prove that there exists X. I then proved that x1 and x2 had to be the same sign to finish off the proof
a)Assume that you are given a matrix A = [aij ] ∈ R n×n with (1...
a)Assume that you are given a matrix A = [aij ] ∈ R n×n with (1 ≤ i, j ≤ n) and having the following interesting property: ai1 + ai2 + ..... + ain = 0 for each i = 1, 2, ...., n Based on this information, prove that rank(A) < n. b) Let A ∈ R m×n be a matrix of rank r. Suppose there are right hand sides b for which Ax = b has no solution,...
Problem 2. Prove that if a measurable subset E ⊂ [0, 1] satisfies m(E ∩ I)...
Problem 2. Prove that if a measurable subset E ⊂ [0, 1] satisfies m(E ∩ I) ≥ αm(I), for some α > 0 and all intervals I ⊂ [0, 1], then m(E) = 1. Hint: A corollary about points of density proved in the class, may help.
Prove that for a square n ×n matrix A, Ax = b (1) has one and...
Prove that for a square n ×n matrix A, Ax = b (1) has one and only one solution if and only if A is invertible; i.e., that there exists a matrix n ×n matrix B such that AB = I = B A. NOTE 01: The statement or theorem is of the form P iff Q, where P is the statement “Equation (1) has a unique solution” and Q is the statement “The matrix A is invertible”. This means...
Given A is a mxn matrix with dim(N(A)) if u=(α(1), α(2),..., α(n))^T ∈N(A). Prove that α(1)a(1)+α(2)a(2)+...+α(n)a(n)=0,...
Given A is a mxn matrix with dim(N(A)) if u=(α(1), α(2),..., α(n))^T ∈N(A). Prove that α(1)a(1)+α(2)a(2)+...+α(n)a(n)=0, where a(1), a(2),..., a(n) are columns of A. Now suppose that B is the matrix obtained from A by performing row operations: Show that α(1)b(1)+α(2)b(2)+...+α(n)b(n)=0, where b(1), b(2),..., b(n) are columns of B. Show that the converse is also true.
4. Suppose that we have a linear system given in matrix form as Ax = b,...
4. Suppose that we have a linear system given in matrix form as Ax = b, where A is an m×n matrix, b is an m×1 column vector, and x is an n×1 column vector. Suppose also that the n × 1 vector u is a solution to this linear system. Answer parts a. and b. below. a. Suppose that the n × 1 vector h is a solution to the homogeneous linear system Ax=0. Showthenthatthevectory=u+hisasolutiontoAx=b. b. Now, suppose that...