Question

Construct a binary relation R on a nonempty set A satisfying the given condition, justify your...

Construct a binary relation R on a nonempty set A satisfying the given condition, justify your solution.

(a) R is an equivalence relation.

(b) R is transitive, but not symmetric.

(c) R is neither symmetric nor reflexive nor transitive.

(d) (5 points) R is antisymmetric and symmetric.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine whether the binary relation R on {a, b, c}   where R={(a, a), (b, b)), (c,...
Determine whether the binary relation R on {a, b, c}   where R={(a, a), (b, b)), (c, c), (a, b), (a, c), (c, b) } is: a. reflexive, antisymmetric, symmetric b. transitive, symmetric, antisymmetric c. antisymmetric, reflexive, transitive d. symmetric, reflexive, transitive
Give an example of a set A and a binary relation R on A that is...
Give an example of a set A and a binary relation R on A that is neither symmetric nor antisymmetric.
Let A be the set of all integers, and let R be the relation "m divides...
Let A be the set of all integers, and let R be the relation "m divides n." Determine whether or not the given relation R, on the set A, is reflexive, symmetric, antisymmetric, or transitive.
Let A be the set of all real numbers, and let R be the relation "less...
Let A be the set of all real numbers, and let R be the relation "less than." Determine whether or not the given relation R, on the set A, is reflexive, symmetric, antisymmetric, or transitive.
Suppose we define the relation R on the set of all people by the rule "a...
Suppose we define the relation R on the set of all people by the rule "a R b if and only if a is Facebook friends with b." Is this relation reflexive?  Is is symmetric?   Is it transitive?   Is it an equivalence relation? Briefly but clearly justify your answers.
the relation R on the set of all people where aRb means that a is younger...
the relation R on the set of all people where aRb means that a is younger than b. Determine if R is: reflexive symmetric transitive antisymmetric
Consider the following relation on the set Z: xRy ? x2 + y is even. For...
Consider the following relation on the set Z: xRy ? x2 + y is even. For each question below, if your answer is "yes", then prove it, if your answer is "no", then show a counterexample. (i) Is R reflexive? (ii) Is R symmetric? (iii) Is R antisymmetric? (iv) Is R transitive? (v) Is R an equivalence relation? If it is, then describe the equivalence classes of R. How many equivalence classes are there?
Let A = {1,2,3,4,5} and X = P(A) be its powerset. Define a binary relation on...
Let A = {1,2,3,4,5} and X = P(A) be its powerset. Define a binary relation on X by for any sets S, T ∈ X, S∼T if and only if S ⊆ T. (a) Is this relation reflexive? (b) Is this relation symmetric or antisymmetric? (c) Is this relation transitive?
Consider the relation R defined on the set R as follows: ∀x, y ∈ R, (x,...
Consider the relation R defined on the set R as follows: ∀x, y ∈ R, (x, y) ∈ R if and only if x + 2 > y. For example, (4, 3) is in R because 4 + 2 = 6, which is greater than 3. (a) Is the relation reflexive? Prove or disprove. (b) Is the relation symmetric? Prove or disprove. (c) Is the relation transitive? Prove or disprove. (d) Is it an equivalence relation? Explain.
Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive [4 Marks] 22 The relation...
Determine whether the relation R is reflexive, symmetric, antisymmetric, and/or transitive [4 Marks] 22 The relation R on Z where (?, ?) ∈ ? if ? = ? . The relation R on the set of all subsets of {1, 2, 3, 4} where SRT means S C T.