Let
A be the set of all real numbers, and let R be the relation "less...
Let
A be the set of all real numbers, and let R be the relation "less
than." Determine whether or not the given relation R, on the set A,
is reflexive, symmetric, antisymmetric, or transitive.
Determine whether the binary relation R on {a, b,
c} where R={(a, a), (b, b)), (c,...
Determine whether the binary relation R on {a, b,
c} where R={(a, a), (b, b)), (c, c), (a, b), (a,
c), (c, b) } is:
a.
reflexive, antisymmetric, symmetric
b.
transitive, symmetric, antisymmetric
c.
antisymmetric, reflexive, transitive
d.
symmetric, reflexive, transitive
Let
A be the set of all integers, and let R be the relation "m divides...
Let
A be the set of all integers, and let R be the relation "m divides
n." Determine whether or not the given relation R, on the set A, is
reflexive, symmetric, antisymmetric, or transitive.
Determine whether the relation R is reflexive, symmetric,
antisymmetric, and/or transitive [4 Marks]
22
The relation...
Determine whether the relation R is reflexive, symmetric,
antisymmetric, and/or transitive [4 Marks]
22
The relation R on Z where (?, ?) ∈ ? if ? = ? .
The relation R on the set of all subsets of {1, 2, 3, 4} where
SRT means S C T.
Construct a binary relation R on a nonempty set A satisfying the
given condition, justify your...
Construct a binary relation R on a nonempty set A satisfying the
given condition, justify your solution.
(a) R is an equivalence relation.
(b) R is transitive, but not symmetric.
(c) R is neither symmetric nor reflexive nor transitive.
(d) (5 points) R is antisymmetric and symmetric.
Let A be the set of all lines in the plane. Let the relation R
be...
Let A be the set of all lines in the plane. Let the relation R
be defined as:
“l1 R l2 ⬄ l1 intersects
l2.” Determine whether S is reflexive, symmetric, or
transitive. If the answer is “yes,” give a justification (full
proof is not needed); if the answer is “no” you must give a
counterexample.
A relation R on a set A is called circular if for all a,b,c in
A,...
A relation R on a set A is called circular if for all a,b,c in
A, aRb and bRc imply cRa. Prove that a relation is an equivalence
relation iff it is reflexive and circular.