Question

NOTE- If it is true, you need to prove it and If it is false, give...

NOTE- If it is true, you need to prove it and If it is false, give a counterexample

f : [a, b] → R is continuous and in the open interval (a,b) differentiable.

a) f rises strictly monotonously ⇐ ∀x ∈ (a, b) : f ′(x) > 0. (TRUE or FALSE?)
b) f is constant ⇐⇒ ∀x∈(a,b): f′(x)=0 (TRUE or FALSE?)
c) If f is reversable, f has no critical point. (TRUE or FALSE?)
d) If a is a “minimizer” of f, then f ′(a) = 0. (TRUE or FALSE?)
e) If f(a) ≥ f(b), then exists a ξ ∈ (a,b) with f′(ξ) ≤ 0. (TRUE or FALSE?)

f) If f is reversable, then f −1 differentiable. (TRUE or FALSE?)
g) If f ′ is limited, then f is lipschitz. (TRUE or FALSE?)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Prove or give a counterexample: If f is continuous on R and differentiable on R∖{0} with...
Prove or give a counterexample: If f is continuous on R and differentiable on R∖{0} with limx→0 f′(x) = L, then f is differentiable on R.
1) For each of the following state whether it is true or false. If true give...
1) For each of the following state whether it is true or false. If true give one sentence exolanation. If false, give counterexample. a)If f is differentiable on (0,1) and f is increasing on (0,1) then f' > 0 on (0,1) b)Suppose that f is thrice differentiable function defined on (-1,1). Suppose that the second order Taylor polynomial of f at 0 is 1-x^2. Then f has a local extremum at 0.
Prove or give a counter example: If f is continuous on R and differentiable on R...
Prove or give a counter example: If f is continuous on R and differentiable on R ∖ { 0 } with lim x → 0 f ′ ( x ) = L , then f is differentiable on R .
Let a < b, a, b, ∈ R, and let f : [a, b] → R...
Let a < b, a, b, ∈ R, and let f : [a, b] → R be continuous such that f is twice differentiable on (a, b), meaning f is differentiable on (a, b), and f' is also differentiable on (a, b). Suppose further that there exists c ∈ (a, b) such that f(a) > f(c) and f(c) < f(b). prove that there exists x ∈ (a, b) such that f'(x)=0. then prove there exists z ∈ (a, b) such...
1. Explain why the following statements are false by giving a counterexample and Change the conditions...
1. Explain why the following statements are false by giving a counterexample and Change the conditions of the statement so that it is correct (a) If f(x) is continuous on (a, b] and (b, c), then f(x) is continuous at b. (b) If the left-handed and right-handed derivatives of f(x) are the same at x=c , then f'(c) exists. (c) If f'(x) > 0 for every x, then f(x) is decreasing. (d) If f(x) is not differentiable at x=c, then...
True or False? Circle whether the following statements are true or false. Explanations are optional. (a)...
True or False? Circle whether the following statements are true or false. Explanations are optional. (a) If f(x) is continuous on [1, 2], then f(x) attains an absolute maximum on [1, 2]. TRUE FALSE (b) If f(x) has a local maximum or a local minimum at x = 1, and f ′ (1) exists, then f ′ (1) = 0. TRUE FALSE (c) If f ′ (1) = 0, then (1, f(1)) is a local maximum or a local minimum...
4. Let f be a function with domain R. Is each of the following claims true...
4. Let f be a function with domain R. Is each of the following claims true or false? If it is false, show it with a counterexample. If it is true, prove it directly from the FORMAL DEFINITION of a limit. (a) IF limx→∞ f(x) = ∞ THEN limx→∞ sin (f(x))  does not exist. (b) IF f(−1) = 0 and f(1) = 2 THEN limx→∞ f(sin(x)) does not exist.
let F : R to R be a continuous function a) prove that the set {x...
let F : R to R be a continuous function a) prove that the set {x in R:, f(x)>4} is open b) prove the set {f(x), 1<x<=5} is connected c) give an example of a function F that {x in r, f(x)>4} is disconnected
either prove that it’s true by explicitly using limit laws, or give examples of functions that...
either prove that it’s true by explicitly using limit laws, or give examples of functions that contradict the statement a) If limx→0 [f(x)g(x)] exists as a real number, then both limx→0 f(x) and limx→0 g(x) must exist as real numbers b) If both limx→0 [f(x) − g(x)] and limx→0 f(x) exist as real numbers, then limx→0 g(x) must exist as a real number
Is each statement true or false? If true, explain why; if false, give a counterexample. a)...
Is each statement true or false? If true, explain why; if false, give a counterexample. a) A linear system with 5 equations and 4 unknowns is always inconsistent. b) If the coefficient matrix of a homogeneous system has a column of zeroes, then the system has infinitely many solutions. (Note: a homogeneous system has augmented matrix [A | b] where b = 0.) c) If the RREF of a homogeneous system has a row of zeroes, then the system has...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT