Question

Steam at 100.°C was passed into a flask containing 360.0 g of water at 21°C where...

Steam at 100.°C was passed into a flask containing 360.0 g of water at 21°C where the steam condensed. How many grams of steam must have condensed if the temperature of the water in the flask was raised to 78°C? The heat of vaporization of water at 100.°C is 40.7 kJ/mol, and the specific heat is 4.18 J/(g·°C).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A sample of steam with a mass of 0.532 g at a temperature of 100 ∘C...
A sample of steam with a mass of 0.532 g at a temperature of 100 ∘C condenses into an insulated container holding 4.25 g of water at 4.0 ∘C. (For water, ΔH∘vap=40.7 kJ/mol and Cwater=4.18 J/(g⋅∘C).) Assuming that no heat is lost to the surroundings, what is the final temperature of the mixture?
A sample of steam with a mass of 0.520 g and at a temperature of 100...
A sample of steam with a mass of 0.520 g and at a temperature of 100 ∘C condenses into an insulated container holding 4.45 g of water at 5.0 ∘C.( ΔH∘vap=40.7 kJ/mol, Cwater=4.18 J/g⋅∘C) Assuming that no heat is lost to the surroundings, what is the final temperature of the mixture?
Steam at 100°C is condensed into a 38.0 g copper calorimeter cup containing 260 g of...
Steam at 100°C is condensed into a 38.0 g copper calorimeter cup containing 260 g of water at 27.0°C. Determine the amount of steam (in g) needed for the system to reach a final temperature of 56.0°C. The specific heat of copper is 387 J/(kg · °C).
Calculate the amount of heat ( in kJ) required to convert 344.0 g of liquid water...
Calculate the amount of heat ( in kJ) required to convert 344.0 g of liquid water at 22.5 oC into steam at 145.0 °C. ( Heat of vaporization of water at its boiling point = 40.7 kJ/mol., specific heats of water and steam are 4.184 J/g °C and 2.01 J/g °C, respectively. )
What mass of steam at 100°C must be mixed with 216 g of ice at its...
What mass of steam at 100°C must be mixed with 216 g of ice at its melting point, in a thermally insulated container, to produce liquid water at 65.0°C? The specific heat of water is 4186 J/kg·K. The latent heat of fusion is 333 kJ/kg, and the latent heat of vaporization is 2256 kJ/kg.
What mass of steam at 100°C must be mixed with 162 g of ice at its...
What mass of steam at 100°C must be mixed with 162 g of ice at its melting point, in a thermally insulated container, to produce liquid water at 71.0°C? The specific heat of water is 4186 J/kg·K. The latent heat of fusion is 333 kJ/kg, and the latent heat of vaporization is 2256 kJ/kg.
What mass of steam at 100°C must be mixed with 260 g of ice at its...
What mass of steam at 100°C must be mixed with 260 g of ice at its melting point, in a thermally insulated container, to produce liquid water at 73.0°C? The specific heat of water is 4186 J/kg·K. The latent heat of fusion is 333 kJ/kg, and the latent heat of vaporization is 2256 kJ/kg
What mass of steam at 100°C must be mixed with 301 g of ice at its...
What mass of steam at 100°C must be mixed with 301 g of ice at its melting point, in a thermally insulated container, to produce liquid water at 16.0°C? The specific heat of water is 4186 J/kg·K. The latent heat of fusion is 333 kJ/kg, and the latent heat of vaporization is 2256 kJ/kg.
1. Calculate the amount of heat required to convert 1 g of liquid water at 67°C...
1. Calculate the amount of heat required to convert 1 g of liquid water at 67°C to steam at 100°C. The specific heat of liquid water is 4.18 J/g°C and the heat of vaporization is 40.7 kJ/mol. 2400 J 2.2 kJ 8.31 J 22.6 kJ 40.8 kJ 2. Which one of the following is true about surfactants? they act to decrease surface tension they form micelles on the surface of water none of these they are generally very small, highly...
100. g of ice at 0 degrees C is added to 300.0 g of water at...
100. g of ice at 0 degrees C is added to 300.0 g of water at 60 degrees C. Assuming no transfer of heat to the surroundings, what is the temperature of the liquid water after all the ice has melted and equilibrium is reached? Specific Heat (ice)= 2.10 J/g C Specific Heat (water)= 4.18 J/g C Heat of fusion = 333 J/g Heat of vaporization= 2258 J/g