Question

Let n∈N, and let a1,a2,...an∈R. Prove that |a1+a2+...+an|<or=|a1|+|a2|+...+|an|

Let n∈N, and let a1,a2,...an∈R. Prove that

|a1+a2+...+an|<or=|a1|+|a2|+...+|an|

Homework Answers

Answer #1

We will prove the given inequality by mathematical induction.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Question 3. Let a1,...,an ∈R. Prove that (a1 + a2 + ... + an)2 /n ≤...
Question 3. Let a1,...,an ∈R. Prove that (a1 + a2 + ... + an)2 /n ≤ (a1)2 + (a2)2 + ... + (an)2. Question 5. Let S ⊆R and T ⊆R be non-empty. Suppose that s ≤ t for all s ∈ S and t ∈ T. Prove that sup(S) ≤ inf(T). Question 6. Let S ⊆ R and T ⊆ R. Suppose that S is bounded above and T is bounded below. Let U = {t−s|t ∈ T, s...
Prove this statement: Let ϕ : A1 → A2 be a homomorphism and let N =...
Prove this statement: Let ϕ : A1 → A2 be a homomorphism and let N = ker ϕ. Then A1/N is isomorphic to ϕ(A1). Further ψ : A1/N → ϕ(A1) defined by ψ(aN) = ϕ(a) is an isomorphism. You must use the following elements to prove: - well-definedness - one-to-one - onto - homomorphism
Please prove (a1+a2+……+an)^2/n ≤ (a1)^2 + (a2)^2 +……+ (an)^2.
Please prove (a1+a2+……+an)^2/n ≤ (a1)^2 + (a2)^2 +……+ (an)^2.
(4) Prove that, if A1, A2, ..., An are countable sets, then A1 ∪ A2 ∪...
(4) Prove that, if A1, A2, ..., An are countable sets, then A1 ∪ A2 ∪ ... ∪ An is countable. (Hint: Induction.) (6) Let F be the set of all functions from R to R. Show that |F| > 2 ℵ0 . (Hint: Find an injective function from P(R) to F.) (7) Let X = {1, 2, 3, 4}, Y = {5, 6, 7, 8}, T = {∅, {1}, {4}, {1, 4}, {1, 2, 3, 4}}, and S =...
Consider the ring R = Z ∞ = {(a1, a2, a3, · · ·) : ai...
Consider the ring R = Z ∞ = {(a1, a2, a3, · · ·) : ai ∈ Z for all i}. It turns out that R forms a ring under the operations (a1, a2, a3, · · ·) + (b1, b2, b3, · · ·) = (a1 + b1, a2 + b2, a3 + b3, · · ·), (a1, a2, a3, · · ·) · (b1, b2, b3, · · ·) = (a1 · b1, a2 · b2, a3 ·...
Let f : A → B be a function and let A1 and A2 be subsets...
Let f : A → B be a function and let A1 and A2 be subsets of A. Prove that if f is one-to-one, then f(A1 ∩ A2) = f(A1) ∩ f(A2).
Find positive numbers n and a1 ,a2,...,an such that a1 + . . . an =...
Find positive numbers n and a1 ,a2,...,an such that a1 + . . . an = 1000 and the product a1 a2 . . . is as large as possible. Also prove why?
Let a1, a2, ..., an be distinct n (≥ 2) integers. Consider the polynomial f(x) =...
Let a1, a2, ..., an be distinct n (≥ 2) integers. Consider the polynomial f(x) = (x−a1)(x−a2)···(x−an)−1 in Q[x] (1) Prove that if then f(x) = g(x)h(x) for some g(x), h(x) ∈ Z[x], g(ai) + h(ai) = 0 for all i = 1, 2, ..., n (2) Prove that f(x) is irreducible over Q
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It...
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It turns out that R forms a ring under the operations: (a1,a2,a3,···)+(b1,b2,b3,···)=(a1 +b1,a2 +b2,a3 +b3,···), (a1,a2,a3,···)·(b1,b2,b3,···)=(a1 ·b1,a2 ·b2,a3 ·b3,···) Let I = {(a1,a2,a3,···) ∈ Z∞ : all but finitely many ai are 0}. You may use without proof the fact that I forms an ideal of R. a) Is I principal in R? Prove your claim. b) Is I prime in R? Prove your claim....
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It...
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all i}. It turns out that R forms a ring under the operations: (a1,a2,a3,···)+(b1,b2,b3,···)=(a1 +b1,a2 +b2,a3 +b3,···), (a1,a2,a3,···)·(b1,b2,b3,···)=(a1 ·b1,a2 ·b2,a3 ·b3,···) Let I = {(a1,a2,a3,···) ∈ Z∞ : all but finitely many ai are 0}. You may use without proof the fact that I forms an ideal of R. a) Is I principal in R? Prove your claim. b) Is I prime in R? Prove your claim....