Question 3. Let a1,...,an ∈R. Prove that
(a1 + a2 + ... + an)2
/n ≤...
Question 3. Let a1,...,an ∈R. Prove that
(a1 + a2 + ... + an)2
/n ≤ (a1)2 + (a2)2 +
... + (an)2.
Question 5. Let S ⊆R and T ⊆R be non-empty. Suppose that s ≤ t for
all s ∈ S and t ∈ T. Prove that sup(S) ≤ inf(T).
Question 6. Let S ⊆ R and T ⊆ R. Suppose that S is bounded above
and T is bounded below. Let U = {t−s|t ∈ T, s...
(4) Prove that, if A1, A2, ..., An are countable sets, then A1 ∪
A2 ∪...
(4) Prove that, if A1, A2, ..., An are countable sets, then A1 ∪
A2 ∪ ... ∪ An is countable. (Hint: Induction.)
(6) Let F be the set of all functions from R to R. Show that |F|
> 2 ℵ0 . (Hint: Find an injective function from P(R) to F.)
(7) Let X = {1, 2, 3, 4}, Y = {5, 6, 7, 8}, T = {∅, {1}, {4},
{1, 4}, {1, 2, 3, 4}}, and S =...
Consider the ring R = Z ∞ = {(a1, a2, a3, · · ·) : ai...
Consider the ring R = Z ∞ = {(a1, a2, a3, · · ·) : ai ∈ Z for
all i}. It turns out that R forms a ring under the operations (a1,
a2, a3, · · ·) + (b1, b2, b3, · · ·) = (a1 + b1, a2 + b2, a3 + b3,
· · ·), (a1, a2, a3, · · ·) · (b1, b2, b3, · · ·) = (a1 · b1, a2 ·
b2, a3 ·...
Find positive numbers n and a1
,a2,...,an such that
a1 + . . . an =...
Find positive numbers n and a1
,a2,...,an such that
a1 + . . . an = 1000 and the product
a1 a2 . . . is as large as possible. Also
prove why?
Let
a1, a2, ..., an be distinct n (≥ 2) integers. Consider the
polynomial
f(x) =...
Let
a1, a2, ..., an be distinct n (≥ 2) integers. Consider the
polynomial
f(x) = (x−a1)(x−a2)···(x−an)−1 in Q[x]
(1) Prove that if then f(x) = g(x)h(x)
for some g(x), h(x) ∈ Z[x],
g(ai) + h(ai) = 0 for all i = 1, 2, ..., n
(2) Prove that f(x) is irreducible over Q
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all
i}.
It...
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all
i}.
It turns out that R forms a ring under the operations:
(a1,a2,a3,···)+(b1,b2,b3,···)=(a1 +b1,a2 +b2,a3 +b3,···),
(a1,a2,a3,···)·(b1,b2,b3,···)=(a1 ·b1,a2 ·b2,a3 ·b3,···)
Let I = {(a1,a2,a3,···) ∈ Z∞ : all but finitely many ai are 0}.
You may use without proof the fact that I forms an ideal of R.
a) Is I principal in R? Prove your claim.
b) Is I prime in R? Prove your claim....
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all
i}.
It...
Consider the ring R = Z∞ = {(a1,a2,a3,···) : ai ∈ Z for all
i}.
It turns out that R forms a ring under the operations:
(a1,a2,a3,···)+(b1,b2,b3,···)=(a1 +b1,a2 +b2,a3 +b3,···),
(a1,a2,a3,···)·(b1,b2,b3,···)=(a1 ·b1,a2 ·b2,a3 ·b3,···)
Let I = {(a1,a2,a3,···) ∈ Z∞ : all but finitely many ai are 0}.
You may use without proof the fact that I forms an ideal of R.
a) Is I principal in R? Prove your claim.
b) Is I prime in R? Prove your claim....