Question

Determine whether the following matrix is diagonalizable. A=[ 1 0 1 0 1 0 -1 0...

Determine whether the following matrix is diagonalizable.

A=[

1 0 1
0 1 0
-1 0 3

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Show that the matrix is not diagonalizable. 3 −4 3 0 3 3 0 0 4...
Show that the matrix is not diagonalizable. 3 −4 3 0 3 3 0 0 4 Find the eigenvectors x1 and x2 corresponding to λ1 and λ2, respectively. x1 = x2 =
Question for linear algebra ----diagonalization If a nxn matrix A is diagonalizable, will their power matrix...
Question for linear algebra ----diagonalization If a nxn matrix A is diagonalizable, will their power matrix AK be diagonalizable? If there are two non-diagonalizable matrix A and B, will their product AB must also non-diagonalizable?
Let A be an n x n invertable and diagonalizable matrix. Is A^2 diagonalizable? Please give...
Let A be an n x n invertable and diagonalizable matrix. Is A^2 diagonalizable? Please give proof.
Matrix A is given as A = 0 2 −1 −1 3 −1 −2 4 −1...
Matrix A is given as A = 0 2 −1 −1 3 −1 −2 4 −1    a) Find all eigenvalues of A. b) Find a basis for each eigenspace of A. c) Determine whether A is diagonalizable. If it is, find an invertible matrix P and a diagonal matrix D such that D = P^−1AP. Please show all work and steps clearly please so I can follow your logic and learn to solve similar ones myself. I...
Let A be a n × n real diagonalizable matrix. Show that A + αIn is...
Let A be a n × n real diagonalizable matrix. Show that A + αIn is also real diagonalizable.
Give an example of a nondiagonal 2x2 matrix that is diagonalizable but not invertible. Show that...
Give an example of a nondiagonal 2x2 matrix that is diagonalizable but not invertible. Show that these two facts are the case for your example.
Suppose T:ℝ4→ℝ4 is the transformation induced by the following matrix A. Determine whether T is one-to-one...
Suppose T:ℝ4→ℝ4 is the transformation induced by the following matrix A. Determine whether T is one-to-one and/or onto. If it is not one-to-one, show this by providing two vectors that have the same image under T. If T is not onto, show this by providing a vector in ℝ4 that is not in the range of T. A = 2 −2 2 −2 2 0 0 −10 2 −1 4 −9 2 −1 3 −8 T is one-to-one T is...
Let A be any 2 by 2 stochastic matrix. Is A always diagonalizable? Justify your answer.
Let A be any 2 by 2 stochastic matrix. Is A always diagonalizable? Justify your answer.
2 1 1 1 0 1 1 1 0 These questions have got me confused: 1....
2 1 1 1 0 1 1 1 0 These questions have got me confused: 1. By calculation, I know this matrix has eigenvalue -1, 0, 3 and they are distinct eigenvalues. Can I directly say that this matrix is diagonalizable without calculating the eigenspace and eigenvectors? For all situations, If we get n number of answers from (aλ+b)n , can we directly ensure that the matrix is diagonalizable? 2. My professor uses CA(x)=det(λI-A) but the textbook shows CA(x)=det(λI-A). which...
a)  Determine whether the matrix is singular.
a)  Determine whether the matrix is singular.